A118417 a(n) = (2*n + 1) * 2^(n + 1).
2, 12, 40, 112, 288, 704, 1664, 3840, 8704, 19456, 43008, 94208, 204800, 442368, 950272, 2031616, 4325376, 9175040, 19398656, 40894464, 85983232, 180355072, 377487360, 788529152, 1644167168, 3422552064, 7113539584, 14763950080, 30601641984, 63350767616
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Magma
[(2*n+1)*2^(n+1): n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
-
Mathematica
CoefficientList[Series[2 (1 - 3 x^2 + 2 x^3)/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 02 2016 *) Table[(2n+1)2^(n+1),{n,0,30}] (* or *) LinearRecurrence[{4,-4},{2,12},30] (* Harvey P. Dale, Oct 25 2021 *)
Formula
G.f.: 2*(1-3*x^2+2*x^3)/((1-x)^2*(1-2*x)^2). - Vincenzo Librandi, Sep 02 2016
Sum_{n>=0} 1/a(n) = A196525. - Fred Daniel Kline, May 24 2019