cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118417 a(n) = (2*n + 1) * 2^(n + 1).

Original entry on oeis.org

2, 12, 40, 112, 288, 704, 1664, 3840, 8704, 19456, 43008, 94208, 204800, 442368, 950272, 2031616, 4325376, 9175040, 19398656, 40894464, 85983232, 180355072, 377487360, 788529152, 1644167168, 3422552064, 7113539584, 14763950080, 30601641984, 63350767616
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*2^(n+1): n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
  • Mathematica
    CoefficientList[Series[2 (1 - 3 x^2 + 2 x^3)/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 02 2016 *)
    Table[(2n+1)2^(n+1),{n,0,30}] (* or *) LinearRecurrence[{4,-4},{2,12},30] (* Harvey P. Dale, Oct 25 2021 *)

Formula

a(n) = A118416(n+1,n) = 2*A014480(n).
G.f.: 2*(1-3*x^2+2*x^3)/((1-x)^2*(1-2*x)^2). - Vincenzo Librandi, Sep 02 2016
Sum_{n>=0} 1/a(n) = A196525. - Fred Daniel Kline, May 24 2019
Sum_{n>=0} (-1)^n/a(n) = arctan(1/sqrt(2))/sqrt(2) = A195695 / A002193. - Amiram Eldar, Oct 01 2022