cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118675 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+47)^2 = y^2.

Original entry on oeis.org

0, 16, 85, 141, 225, 616, 940, 1428, 3705, 5593, 8437, 21708, 32712, 49288, 126637, 190773, 287385, 738208, 1112020, 1675116, 4302705, 6481441, 9763405, 25078116, 37776720, 56905408, 146166085, 220178973, 331669137, 851918488, 1283297212, 1933109508
Offset: 1

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+47, y).
Corresponding values y of solutions (x, y) are in A159750.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (51+14*sqrt(2))/47 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3267+1702*sqrt(2))/47^2 for n mod 3 = 0.

Crossrefs

Cf. A159750, A028871, A118337, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159751 (decimal expansion of (51+14*sqrt(2))/47), A159752 (decimal expansion of (3267+1702*sqrt(2))/47^2).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+47)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,16,85,141,225,616,940},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+94+2209), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) +94 for n > 6; a(1)=0, a(2)=16, a(3)=85, a(4)=141, a(5)=225, a(6)=616.
G.f.: x*(16+69*x+56*x^2-12*x^3-23*x^4-12*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 47*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Apr 30 2009