A118732 Numbers k such that 3^k has odd digit sum.
0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 25, 26, 27, 30, 31, 32, 34, 35, 36, 39, 41, 45, 48, 51, 52, 53, 59, 60, 61, 62, 63, 65, 66, 68, 69, 73, 74, 76, 78, 79, 80, 81, 86, 87, 89, 91, 92, 98, 99, 100, 101, 103, 105, 108, 113, 114, 115, 117, 118, 119, 121
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> convert(convert(3^t,base,10),`+`)::odd, [$0..1000]); # Robert Israel, Jun 28 2017
-
Mathematica
Select[Range[0, 121], Mod[ Plus @@ IntegerDigits[3^# ], 2] == 1 &] (* Ray Chandler, Jun 10 2006 *) Select[Range[0,200],OddQ[Total[IntegerDigits[3^#]]]&] (* Harvey P. Dale, Dec 30 2021 *)
-
PARI
isok(n) = (sumdigits(3^n) % 2) == 1; \\ Michel Marcus, Jun 28 2017
Comments