A120416 Numbers k such that k^2+1 divides k!.
18, 21, 38, 43, 47, 57, 68, 70, 72, 73, 83, 99, 111, 117, 119, 123, 128, 132, 133, 142, 157, 172, 173, 174, 182, 185, 191, 192, 193, 200, 211, 212, 216, 233, 237, 239, 242, 251, 253, 255, 265, 268, 273, 278, 293, 294, 302, 305, 307, 313, 319, 322, 327, 336
Offset: 1
Examples
For the first number, k=18: 18^2+1=325 divides 18!=6402373705728000.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Hojoo Lee, Problem A 26, Problems in elementary number theory, 2003.
Programs
-
Maple
select(t -> t! mod (t^2+1)=0, [$1..1000]); # Robert Israel, Nov 11 2016
-
Mathematica
Select[Range@ 336, Divisible[#!, #^2 + 1] &] (* Jinyuan Wang, Feb 06 2019 *)
-
PARI
isok(n) = (n! % (n^2+1) == 0) \\ Michel Marcus, Jul 23 2013
-
PARI
valp(n, p)=my(s); while(n>=p, s += n\=p); s is(n)=my(f=factor(n^2+1)); for(i=1, #f~, if(valp(n, f[i, 1])
Jinyuan Wang, Feb 06 2019
Comments