A117330 a(n) is the determinant of the 3 X 3 matrix with entries the 9 consecutive primes starting with the n-th prime.
-78, 20, -36, 36, -40, -96, 96, -480, -424, 520, 348, 100, -540, 144, -144, -712, 240, 96, 480, -1120, -468, -1152, -3384, 1404, -576, -3924, 7884, -1548, -7312, 6288, -1828, -528, -768, 1920, 720, 768, -1920, 2400, -944, -9340, 12588, 15540, -864, 5600, 4124, -13668, -1428, 1552
Offset: 1
Examples
a(3)=-36 = det([[5,7,11],[13,17,19],[23,29,31]]).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
primedet := proc(n) local L; L:=map(ithprime,[$n..n+8]); linalg[det]([L[1..3],L[4..6],L[7..9]]) end;
-
Mathematica
Table[Det[Partition[Prime[Range[n,n+8]],3,3]],{n,50}] (* Harvey P. Dale, May 16 2019 *)
-
PARI
a(n) = matdet(matrix(3,3,i,j,prime((n+j-1)+3*(i-1)))); \\ Michel Marcus, Jan 25 2021
Formula
a(A117345(n)) = 0. - Hugo Pfoertner, Jan 26 2021
Extensions
Edited by N. J. A. Sloane at the suggestion of Stefan Steinerberger, Jul 14 2007
Comments