A118827 2-adic continued fraction of zero, where a(n) = 1 if n is odd, otherwise -2*A006519(n/2).
1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -64, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1
Offset: 1
Examples
For n >= 1, convergents A118828(k)/A118829(k): at k = 4*n: -1/(2*A080277(n)); at k = 4*n+1: -1/(2*A080277(n)-1); at k = 4*n+2: -1/(2*A080277(n)-2); at k = 4*n-1: 0. Convergents begin: 1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8, 1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24, 1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32, 1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Array[If[OddQ@ #, 1, -2*2^(IntegerExponent[#, 2] - 1)] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
a(n)=local(p=+1,q=-2);if(n%2==1,p,q*2^valuation(n/2,2))
Formula
From Amiram Eldar, Oct 28 2023: (Start)
Multiplicative with a(2^e) = -2^e, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 - 2^(1-s) + 1/(2-2^s)).
Sum_{k=1..n} a(k) ~ (-1/(2*log(2))) * n *(log(n) + gamma - log(2)/2 - 1), where gamma is Euler's constant (A001620). (End)
Comments