cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118828 Numerators of the convergents of the 2-adic continued fraction of zero given by A118827.

Original entry on oeis.org

1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Examples

			For n>=1, convergents A118828(k)/A118829(k) are:
at k = 4*n: -1/(2*A080277(n));
at k = 4*n+1: -1/(2*A080277(n)-1);
at k = 4*n+2: -1/(2*A080277(n)-2);
at k = 4*n-1: 0/(-1)^n.
Convergents begin:
1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8,
1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24,
1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32,
1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
		

Crossrefs

Cf. A118827 (partial quotients), A118829 (denominators).

Programs

  • Maple
    seq(signum(mods(n+1, 4)*mods(n+1, 8)), n=1..100); # Peter Luschny, Oct 13 2020
  • PARI
    {a(n)=local(p=+1,q=-2,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}

Formula

Period 8 sequence: [1, -1, 0, -1, -1, 1, 0, 1].
G.f.: (1 - x - x^3)/(1 + x^4).
Assuming offset 0 with a(0) = 1, then a has the g.f. (1 + x - x^2)/(1 + x^4) and a(n) = signum(mods(n+1, 4)*mods(n+1, 8)), where mods(a, b) is the symmetric modulo function. - Peter Luschny, Oct 13 2020

A118829 Denominators of the convergents of the 2-adic continued fraction of zero given by A118827.

Original entry on oeis.org

1, -2, -1, 2, 1, 0, 1, -8, -7, 6, -1, 10, 9, -8, 1, -24, -23, 22, -1, 26, 25, -24, 1, -32, -31, 30, -1, 34, 33, -32, 1, -64, -63, 62, -1, 66, 65, -64, 1, -72, -71, 70, -1, 74, 73, -72, 1, -88, -87, 86, -1, 90, 89, -88, 1, -96, -95, 94, -1, 98, 97, -96, 1, -160, -159, 158, -1, 162, 161, -160, 1, -168, -167, 166, -1, 170, 169
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Examples

			For n>=1, convergents A118828(k)/A118829(k) are:
at k = 4*n: -1/(2*A080277(n));
at k = 4*n+1: -1/(2*A080277(n)-1);
at k = 4*n+2: -1/(2*A080277(n)-2);
at k = 4*n-1: 0.
Convergents begin:
1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8,
1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24,
1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32,
1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
		

Crossrefs

Cf. A118827 (partial quotients), A118829 (denominators).

Programs

  • PARI
    {a(n)=local(p=+1,q=-2,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}

Formula

a(4*n) = -(-1)^n*2*A080277(n); a(4*n+1) = -(-1)^n*(2*A080277(n)-1); a(4*n+2) = (-1)^n*(2*A080277(n)-2); a(4*n-1) = (-1)^n.

A118821 2-adic continued fraction of zero, where a(n) = 2 if n is odd, -A006519(n/2) otherwise.

Original entry on oeis.org

2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -32, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -8, 2, -1, 2, -2, 2, -1, 2, -4, 2, -1, 2, -2, 2, -1, 2, -16
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are A118824, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118822(k)/A118823(k) are:
  at k = 4*n: -1/A080277(n);
  at k = 4*n+1: -2/(2*A080277(n)-1);
  at k = 4*n+2: -1/(A080277(n)-1);
  at k = 4*n-1: 0/(-1)^n.
Convergents begin:
  2/1, -1/-1, 0/-1, -1/1, -2/1, 1/0, 0/1, 1/-4,
  2/-7, -1/3, 0/-1, -1/5, -2/9, 1/-4, 0/1, 1/-12,
  2/-23, -1/11, 0/-1, -1/13, -2/25, 1/-12, 0/1, 1/-16,
  2/-31, -1/15, 0/-1, -1/17, -2/33, 1/-16, 0/1, 1/-32, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118822/A118823; variants: A118824, A118827, A118830; A100338.

Programs

  • Mathematica
    Array[-2^(IntegerExponent[#, 2] - 1) /. -1/2 -> 2 &, 96] (* Michael De Vlieger, Nov 02 2018 *)
  • PARI
    a(n)=local(p=+2,q=-1);if(n%2==1,p,q*2^valuation(n/2,2))

A118824 2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.

Original entry on oeis.org

-2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 32, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118825(k)/A118826(k):
  at k = 4*n: 1/A080277(n);
  at k = 4*n+1: 2/(2*A080277(n)-1);
  at k = 4*n+2: 1/(A080277(n)-1);
  at k = 4*n-1: 0.
Convergents begin:
  -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,
  -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,
  -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,
  -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118825/A118826; variants: A118821, A118827, A118830; A100338.

Programs

  • Mathematica
    Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=-2,q=+1);if(n%2==1,p,q*2^valuation(n/2,2))

A118830 2-adic continued fraction of zero, where a(n) = -1 if n is odd, 2*A006519(n/2) otherwise.

Original entry on oeis.org

-1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 64, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118827. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118831(k)/A118832(k):
  at k = 4*n: 1/(2*A080277(n));
  at k = 4*n+1: 1/(2*A080277(n)-1);
  at k = 4*n+2: 1/(2*A080277(n)-2);
  at k = 4*n-1: 0.
Convergents begin:
  -1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8,
  -1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24,
  -1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32,
  -1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118831/A118832; variants: A118821, A118824, A118827; A100338.

Programs

  • Mathematica
    Array[If[OddQ@ #, -1, 2^IntegerExponent[#, 2]] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=-1,q=+2);if(n%2==1,p,q*2^valuation(n/2,2))
Showing 1-5 of 5 results.