cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118827 2-adic continued fraction of zero, where a(n) = 1 if n is odd, otherwise -2*A006519(n/2).

Original entry on oeis.org

1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -64, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.
Multiplicative because both A006519 and A165326 are. - Andrew Howroyd, Aug 01 2018

Examples

			For n >= 1, convergents A118828(k)/A118829(k):
  at k = 4*n: -1/(2*A080277(n));
  at k = 4*n+1: -1/(2*A080277(n)-1);
  at k = 4*n+2: -1/(2*A080277(n)-2);
  at k = 4*n-1: 0.
Convergents begin:
  1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8,
  1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24,
  1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32,
  1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
		

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, -2*2^(IntegerExponent[#, 2] - 1)] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=+1,q=-2);if(n%2==1,p,q*2^valuation(n/2,2))

Formula

a(n) = A165326(n) * A006519(n). - Andrew Howroyd, Aug 01 2018
From Amiram Eldar, Oct 28 2023: (Start)
Multiplicative with a(2^e) = -2^e, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 - 2^(1-s) + 1/(2-2^s)).
Sum_{k=1..n} a(k) ~ (-1/(2*log(2))) * n *(log(n) + gamma - log(2)/2 - 1), where gamma is Euler's constant (A001620). (End)

A118828 Numerators of the convergents of the 2-adic continued fraction of zero given by A118827.

Original entry on oeis.org

1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Examples

			For n>=1, convergents A118828(k)/A118829(k) are:
at k = 4*n: -1/(2*A080277(n));
at k = 4*n+1: -1/(2*A080277(n)-1);
at k = 4*n+2: -1/(2*A080277(n)-2);
at k = 4*n-1: 0/(-1)^n.
Convergents begin:
1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8,
1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24,
1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32,
1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
		

Crossrefs

Cf. A118827 (partial quotients), A118829 (denominators).

Programs

  • Maple
    seq(signum(mods(n+1, 4)*mods(n+1, 8)), n=1..100); # Peter Luschny, Oct 13 2020
  • PARI
    {a(n)=local(p=+1,q=-2,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}

Formula

Period 8 sequence: [1, -1, 0, -1, -1, 1, 0, 1].
G.f.: (1 - x - x^3)/(1 + x^4).
Assuming offset 0 with a(0) = 1, then a has the g.f. (1 + x - x^2)/(1 + x^4) and a(n) = signum(mods(n+1, 4)*mods(n+1, 8)), where mods(a, b) is the symmetric modulo function. - Peter Luschny, Oct 13 2020
Showing 1-2 of 2 results.