A118831 Numerators of the convergents of the 2-adic continued fraction of zero given by A118830.
-1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, 1, -1, -1, 0
Offset: 1
Examples
For n>=1, convergents A118831(k)/A118832(k) are: at k = 4*n: 1/(2*A080277(n)); at k = 4*n+1: 1/(2*A080277(n)-1); at k = 4*n+2: 1/(2*A080277(n)-2); at k = 4*n-1: 0. Convergents begin: -1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8, -1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24, -1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32, -1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).
Programs
-
PARI
{a(n)=local(p=-1,q=+2,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}
Formula
Period 8 sequence: [ -1,-1,0,-1,1,1,0,1].
G.f.: -x*(1+x+x^3)/(1+x^4). [corrected by R. J. Mathar, Jul 22 2009]
a(n) = -a(n-4). - R. J. Mathar, Jul 22 2009
Comments