A118830 2-adic continued fraction of zero, where a(n) = -1 if n is odd, 2*A006519(n/2) otherwise.
-1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 64, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1
Offset: 1
Examples
For n >= 1, convergents A118831(k)/A118832(k): at k = 4*n: 1/(2*A080277(n)); at k = 4*n+1: 1/(2*A080277(n)-1); at k = 4*n+2: 1/(2*A080277(n)-2); at k = 4*n-1: 0. Convergents begin: -1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8, -1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24, -1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32, -1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Array[If[OddQ@ #, -1, 2^IntegerExponent[#, 2]] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
a(n)=local(p=-1,q=+2);if(n%2==1,p,q*2^valuation(n/2,2))
Comments