cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107850 Expansion of g.f. (x^2+x+1)*(2*x^2+2*x+1)*(x-1)^2/((1-x^2-2*x^3)*(x^4+1)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 3, 6, 7, 13, 17, 24, 41, 57, 91, 142, 207, 325, 489, 736, 1137, 1713, 2611, 3990, 6039, 9213, 14017, 21288, 32441, 49321, 75019, 114206, 173663, 264245, 402073, 611568, 930561, 1415713, 2153699, 3276838, 4985127, 7584237, 11538801
Offset: 0

Views

Author

Creighton Dement, May 25 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1lesforzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')], 1vesforzap = A000004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2+x+1)(2x^2+2x+1)(x-1)^2/((1-x^2-2x^3)(x^4+1)),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,2,-1,0,1,2},{1,1,1,0,1,1,3},50] (* Harvey P. Dale, Dec 26 2015 *)

Formula

a(n) = A052947(n-1)+A118831(n+6). - R. J. Mathar, Apr 18 2008
a(0)=1, a(1)=1, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=3, a(n)=a(n-2)+ 2*a(n-3)- a(n-4)+a(n-6)+2*a(n-7). - Harvey P. Dale, Dec 26 2015

A118830 2-adic continued fraction of zero, where a(n) = -1 if n is odd, 2*A006519(n/2) otherwise.

Original entry on oeis.org

-1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 64, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118827. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118831(k)/A118832(k):
  at k = 4*n: 1/(2*A080277(n));
  at k = 4*n+1: 1/(2*A080277(n)-1);
  at k = 4*n+2: 1/(2*A080277(n)-2);
  at k = 4*n-1: 0.
Convergents begin:
  -1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8,
  -1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24,
  -1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32,
  -1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118831/A118832; variants: A118821, A118824, A118827; A100338.

Programs

  • Mathematica
    Array[If[OddQ@ #, -1, 2^IntegerExponent[#, 2]] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=-1,q=+2);if(n%2==1,p,q*2^valuation(n/2,2))

A118832 Denominators of the convergents of the 2-adic continued fraction of zero given by A118830.

Original entry on oeis.org

1, 2, -1, -2, 1, 0, 1, 8, -7, -6, -1, -10, 9, 8, 1, 24, -23, -22, -1, -26, 25, 24, 1, 32, -31, -30, -1, -34, 33, 32, 1, 64, -63, -62, -1, -66, 65, 64, 1, 72, -71, -70, -1, -74, 73, 72, 1, 88, -87, -86, -1, -90, 89, 88, 1, 96, -95, -94, -1, -98, 97, 96, 1, 160, -159, -158, -1, -162, 161, 160, 1, 168, -167, -166, -1, -170, 169, 168
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Examples

			For n>=1, convergents A118831(k)/A118832(k) are:
at k = 4*n: 1/(2*A080277(n));
at k = 4*n+1: 1/(2*A080277(n)-1);
at k = 4*n+2: 1/(2*A080277(n)-2);
at k = 4*n-1: 0.
Convergents begin:
-1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8,
-1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24,
-1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32,
-1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
		

Crossrefs

Cf. A080277; A118830 (partial quotients), A118831 (numerators).

Programs

  • PARI
    {a(n)=local(p=-1,q=+2,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[2,1]}

Formula

a(4*n) = (-1)^n*2*A080277(n); a(4*n+1) = -(-1)^n*(2*A080277(n)-1); a(4*n+2) = -(-1)^n*(2*A080277(n)-2); a(4*n-1) = (-1)^n.
Showing 1-3 of 3 results.