cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118889 Ratio of Dimensions of the traditional Cartan exceptional group sequence A1,G2,F4,E6,E7,E8 to the Cartan matrix Dimension: Dimc={1, 2, 4, 6, 7, 8} DimG={3, 14, 52, 78, 133, 248} DimG/DimC={3, 7, 13, 13, 19, 31}.

Original entry on oeis.org

3, 7, 13, 13, 19, 31
Offset: 1

Views

Author

Roger L. Bagula, May 17 2007

Keywords

Comments

The sequence is inherently unordered, because there is no standard ordering of these groups. - R. J. Mathar, Dec 04 2011

Crossrefs

Programs

  • Mathematica
    (* Cartan Matrices: *)
    e[3] = {{2}};
    e[4] = {{2, -3}, {-1, 2}};
    e[5] = {{2, -1, 0, 0}, {-1, 2, -2, 0}, {0, -1, 2, -1}, {0, 0, -1, 2}};
    e[6] = {{2, 0, -1, 0, 0, 0}, {0, 2, 0, -1, 0, 0}, {-1, 0, 2, -1, 0, 0}, { 0, -1, -1, 2, -1, 0}, { 0, 0, 0, -1, 2, -1}, { 0, 0, 0, 0, -1, 2}};
    e[7] = {{2, 0, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0}, {0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, -1, 2, -1 }, { 0, 0, 0, 0, 0, -1, 2 }};
    e[8] = { {2, 0, -1, 0, 0, 0, 0, 0}, { 0, 2, 0, -1, 0, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0}, { 0, 0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, -1, 2}} ;
    a0 = Table[Length[CoefficientList[CharacteristicPolynomial[e[n], x], x]] - 1, {n, 3, 8}]; (* Poincaré Polynomials*)
    (*Poincaré polynomial exponents for G2, E6, E7, E8 from A005556, A005763, A005776 and Armand Borel's Essays in History of Lie Groups and Algebraic Groups*) (* b[n] = a[n] + 1 : DimGroup = Apply[Plus, b[n]]*)
    a[0] = {1};
    a[1] = {1, 5};
    a[2] = {1, 5, 7, 11};
    a[3] = {1, 4, 5, 7, 8, 11};
    a[4] = {1, 5, 7, 9, 11, 13, 17};
    a[5] = {1, 7, 11, 13, 17, 19, 23, 29};
    b0 = Table[Length[CoefficientList[Expand[Product[(1 + t^(2*a[i][[n]] + 1)), {n, 1, Length[a[i]]}]], t]] - 1, {i, 0, 5}];
    Table[b0[[n]]/a0[[n]], {n, 1, Length[a0]}]

Formula

P[n]=Poincare-Polynomial[n]=Product[1+t^A129766[m],{m,1,n}]
DimG[n]=Length[CoefficientList[P[n],t]]-1
Pc[n]=CharacteristicPolynomial[M[n],x]
DimC[n]=Length[CoefficientList[Pc[n],x]]-1
a[n]=DimG[n]/DimC[n]