A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.
1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1; 1, 6; 1, 30; 1, 90; 1, 210; 1, 420, 1260; 1, 756, 11340; 1, 1260, 56700; 1, 1980, 207900; 1, 2970, 623700, 1247400; ...
Links
- G. C. Greubel, Rows n = 0..150 of the triangle, flattened
Programs
-
Magma
F:= Factorial; [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
Mathematica
T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)]; Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
-
PARI
T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
-
Sage
f=factorial; flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
Formula
E.g.f.: A(x,y) = exp(x + y*x^4/4).
Comments