cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118934 E.g.f.: exp(x + x^4/4).

Original entry on oeis.org

1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 5691897121, 65641390081, 544238393041, 3362783785777, 36455473647271, 485442581801311, 4828464958268491, 35900587138847971, 423276450114749617, 6318491163509870401
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals row sums of triangle A118933.
These are the telephone numbers T^(4)n of [Artioli et al., p. 7]. - _Eric M. Schmidt, Oct 12 2017

Crossrefs

Sequences with e.g.f. exp(x + x^m/m): A000079 (m=1), A000085 (m=2), A001470 (m=3), this sequence (m=4), A052501 (m=5), A293588 (m=6), A053497 (m=7).
Cf. A118933.

Programs

  • Magma
    F:=Factorial; [(&+[F(n)/(4^j*F(j)*F(n-4*j)): j in [0..Floor(n/4)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^4/4],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Jan 26 2013 *)
    Table[Sum[n!/(4^k*k!*(n-4*k)!), {k,0,n/4}], {n,0,30}]
  • PARI
    a(n)=if(n<0,0,if(n==0,1,a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4)))
    
  • Sage
    f=factorial; [sum(f(n)/(4^j*f(j)*f(n-4*j)) for j in (0..n/4)) for n in (0..30)] # G. C. Greubel, Mar 07 2021
    

Formula

a(n) = a(n-1) + (n-1)*(n-2)*(n-3)*a(n-4) for n>=4, with a(0)=a(1)=a(2)=a(3)=1.
a(n) ~ 1/2 * n^(3*n/4) * exp(n^(1/4)-3*n/4). - Vaclav Kotesovec, Feb 25 2014
a(n) = Sum_{k=0..floor(n/4)} n!/(4^k*k!*(n-4*k)!). - G. C. Greubel, Mar 07 2021