cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118968 a(4n+k) = (k+1)*binomial(5n+k,n)/(4n+k+1), k=0..3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 80, 136, 204, 285, 665, 1155, 1771, 2530, 5980, 10530, 16380, 23751, 56637, 100688, 158224, 231880, 556512, 996336, 1577532, 2330445, 5620485, 10116873, 16112057, 23950355, 57985070, 104819165, 167710664, 250543370, 608462470
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^4))^(-1).

Crossrefs

Programs

  • Mathematica
    Table[k=Mod[n,4];(k+1)Binomial[(5n-k)/4,(n-k)/4]/(n+1),{n,0,40}] (* Robert A. Russell, Mar 14 2024 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2*subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A*exp(sum(m=1,n\4,4*polcoeff(log(A+x*O(x^n)),4*m)*x^(4*m))+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\4, 5, n%4+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(4n) = A002294(n), a(4n+1) = A118969(n), a(4n+2) = A118970(n), a(4n+3) = A118971(n).
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x)*A(I*x)*A(-I*x). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^4) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294. - Paul D. Hanna, Jun 04 2012
From Robert A. Russell, Mar 14 2024: (Start)
G.f.: G(z^4) + z*G(z^4)^2 + z^2*G(z^4)^3 + z^3*G(z^4)^4, where G(z) = 1 + z*G(z)^5 is the g.f. for A002294.
G.f.: E(1)(t*E(5)(t^4)) (fifth entry in Table 3), where E(d)(t) is defined in formula 3 of Hering link. (End)
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(4*k) * a(n-1-4*k). - Seiichi Manyama, Jul 07 2025