cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118981 Triangle read by rows: T(n,k) = abs( A104509(n-1,n-k) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 12, 7, 1, 5, 15, 25, 25, 11, 1, 6, 21, 44, 60, 48, 18, 1, 7, 28, 70, 119, 133, 91, 29, 1, 8, 36, 104, 210, 296, 284, 168, 47, 1, 9, 45, 147, 342, 576, 699, 585, 306, 76, 1, 10, 55, 200, 525, 1022, 1485, 1580, 1175, 550, 123
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

The old definition was: "Companion Pell polynomials, as a triangle."

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,  4;
  1, 4, 10, 12,  7;
  1, 5, 15, 25, 25, 11;
  ...
Polynomials: (1), (x + 1), (x^2 + 2x + 3), (x^3 + 3x^2 + 6x + 4), ...
Row 3: (1, 2, 3); as (x^2 + 2x + 3) = f(x), (x=1,2,3,...) of column 3 of A309220: (6, 11, 18, 27, 38, 51,...). The latter sequence = binomial transform of row 3 of A118980: (6, 5, 2).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Map[Reverse,CoefficientList[CoefficientList[Series[(1 + x^2)/(1-x-x^2 - x*y), {x,0,8}], x], y]]] (* Georg Fischer, Aug 13 2019 *)
  • PARI
    {T(n, k) = polcoeff(polcoeff((1 + x^2)/(1 - x - x^2 - x*y) + x*O(x^n), n), n-k)}; /* Michael Somos, Oct 10 2021 */
    
  • PARI
    { A118981(n,k) = if(n==0, k==0, sum(i=0,k\2, n/(n-i) * binomial(k-i,i) * binomial(n-i,n-k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n >= 1, T(n,k) = Sum_{i=0..floor(k/2)} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,n-k) = Sum_{i=0..floor(k/2)} (n/(n-i)) * binomial(k-i,i) * binomial(n-i,n-k). - Max Alekseyev, Oct 11 2021
G.f.: (1 + x^2)/(1-x-x^2 - x*y) (columns in reverse order). - Georg Fischer, Aug 13 2019
G.f. for row n >= 1 is the reciprocal of Lucas polynomial L_n(1+x). - Max Alekseyev, Oct 11 2021

Extensions

Edited by N. J. A. Sloane, Aug 12 2019, replacing old definition by explicit formula from R. J. Mathar, Oct 30 2011
a(22)-a(62) from Georg Fischer, Aug 13 2019
More terms from Michel Marcus, Oct 11 2021