A119344 Integer lengths of Theodorus-primes: numbers n such that the concatenation of the first n decimal digits of the Theodorus's constant sqrt(3) is prime.
2, 3, 19, 111, 116, 641, 5411, 170657
Offset: 1
Examples
sqrt(3) = 1.732050807568877..., so a(1) = 2 (17 with 2 decimal digits is the 1st prime in the decimal expansion), a(2) = 3 (173 with 3 decimal digits is the 2nd prime in the decimal expansion).
Links
- Eric Weisstein's World of Mathematics, Constant Primes
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Theodorus's Constant Digits
Programs
-
Mathematica
nn = 1000; digs = RealDigits[Sqrt[3], 10, nn][[1]]; n = 0; t = {}; Do[n = 10*n + digs[[d]]; If[PrimeQ[n], AppendTo[t, d]], {d, nn}]; t (* T. D. Noe, Dec 05 2011 *) Module[{nn=171000,c},c=RealDigits[Sqrt[3],10,nn][[1]];Select[Range[ nn], PrimeQ[ FromDigits[Take[c,#]]]&]] (* Harvey P. Dale, May 13 2017 *)
Extensions
Edited by Charles R Greathouse IV, Apr 27 2010
a(8) = 170657 from Eric W. Weisstein, Aug 18 2013