A119467 A masked Pascal triangle.
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0
Examples
Triangle begins 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1 p[0](x) = 1 p[1](x) = x p[2](x) = 1 + x^2 p[3](x) = 3*x + x^3 p[4](x) = 1 + 6*x^2 + x^4 p[5](x) = 5*x + 10*x^3 + x^5 Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |0 1 ||0 1 ||0 1 | |0 1 | |1 0 1 ||0 0 1 ||0 0 1 |... = |1 0 1 | |0 3 0 1 ||0 1 0 1 ||0 0 0 1 | |0 4 0 1 | |1 0 6 0 1||0 0 3 0 1||0 0 1 0 1| |1 0 10 0 1| |... ||... ||... | |... | - _Peter Bala_, Jul 28 2014
References
- Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Tom Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- D. Dimitrov and P. Rusev, Zeros of entire Fourier transforms, East Journal on Approximations, Vol. 17, No. 1, p. 1-108, 2011.
- Miguel Méndez and Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO], 2017, Section 4.3, Example 4.
- Miguel A. Méndez and Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics 25(3) (2018), #P3.25.
- Luca Onnis, Animation of the Ehrenfest model.
- Wikipedia, Ehrenfest model.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
From Peter Luschny, Jul 14 2009: (Start)
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ... A128174
k= 1: 1, 1, 2, 4, 8, 16, ... A011782
k= 2: 1, 2, 5, 14, 41, 122, ... A007051
k= 3: 1, 3, 10, 36, 136, ... A007582
k= 4: 1, 4, 17, 76, 353, ... A081186
k= 5: 1, 5, 26, 140, 776, ... A081187
k= 6: 1, 6, 37, 234, 1513, ... A081188
k= 7: 1, 7, 50, 364, 2696, ... A081189
k= 8: 1, 8, 65, 536, 4481, ... A081190
k= 9: 1, 9, 82, 756, 7048, ... A060531
k=10: 1, 10, 101, 1030, ... A081192
p[n](k), k=0,1,...
p[0]: 1,1,1,1,1,1, ....... A000012
p[1]: 0,1,2,3,4,5, ....... A001477
p[2]: 1,2,5,10,17,26, .... A002522
p[3]: 0,4,14,36,76,140, .. A079908 (End)
Programs
-
Haskell
a119467 n k = a119467_tabl !! n !! k a119467_row n = a119467_tabl !! n a119467_tabl = map (map (flip div 2)) $ zipWith (zipWith (+)) a007318_tabl a130595_tabl -- Reinhard Zumkeller, Mar 23 2014
-
Magma
/* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
-
Maple
# Polynomials: p_n(x) p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end; # Coefficients: a(n) seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
-
Mathematica
Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *) n = 15; "n-th row" mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}]; mat[[1, 2]] = 1; mat[[n + 1, n]] = 1; For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ]; For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n]; mat // MatrixForm; P2 = Dot[mat, mat]; R1 = Simplify[ Eigenvectors[Transpose[P2]][[1]]/ Total[Eigenvectors[Transpose[P2]][[1]]]] R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}] odd = R2*2^(n - 1) (* _Luca Onnis *)
-
Sage
@CachedFunction def A119467_poly(n): R = PolynomialRing(ZZ, 'x') x = R.gen() return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2)) def A119467_row(n): return list(A119467_poly(n)) for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
Formula
G.f.: (1-x*y)/(1-2*x*y-x^2+x^2*y^2);
T(n,k) = C(n,k)*(1+(-1)^(n-k))/2;
Column k has g.f. (1/(1-x^2))*(x/(1-x^2))^k*Sum_{j=0..k+1} binomial(k+1,j)*sin((j+1)*Pi/2)^2*x^j.
Column k has e.g.f. cosh(x)*x^k/k!. - Paul Barry, May 26 2006
Let Pascal's triangle, A007318 = P; then this triangle = (1/2) * (P + 1/P). Also A131047 = (1/2) * (P - 1/P). - Gary W. Adamson, Jun 12 2007
Extensions
Edited by N. J. A. Sloane, Jul 14 2009
Comments