cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119617 Integers of the form c(n)/b(n) where c(n+1)=c(n)+(n+1)^4 with c(0)=1 and b(n+1)=b(n)+(n+1)^2 with b(0)=1.

Original entry on oeis.org

1, 7, 25, 43, 79, 109, 163, 205, 277, 331, 421, 487, 595, 673, 799, 889, 1033, 1135, 1297, 1411, 1591, 1717, 1915, 2053, 2269, 2419, 2653, 2815, 3067, 3241, 3511, 3697, 3985, 4183, 4489, 4699, 5023, 5245, 5587, 5821, 6181, 6427, 6805, 7063, 7459, 7729
Offset: 1

Views

Author

Keywords

Comments

The sequence is the union of A134153 and A134154 (without the first term of A134154): A134153(0)=1, A134154(1)=7, A134153(1)=25, A134154(2)=43, A134153(2)=79 and so on.

Examples

			c(0)/b(0) = 1/1 =1.
c(3)/b(3) = (1+2^4+3^4)/(1+2^2+3^2)= (1+16+81)/(1+4+9) = 98/14 = 7.
		

Crossrefs

Programs

  • Magma
    [(30*n*(n-1)-3*(2*n-1)*(-1)^n+5)/8: n in [1..46]]; // Bruno Berselli, Jun 27 2011
    
  • Maple
    P:=proc(n) local f,i,j,nu,de; nu:=0; de:=0; for i from 1 by 1 to n do nu:=nu+i^4; de:=de+i^2; f:=nu/de; if trunc(f)=f then print(f); fi; od; end: P(1000);
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{1,7,25,43,79},50] (* Harvey P. Dale, Jan 21 2017 *)
  • Maxima
    makelist((30*n*(n-1)-3*(2*n-1)*(-1)^n+5)/8,n,1,46); /* Bruno Berselli, Jun 27 2011 */
  • PARI
    for(n=1,46, print1((30*n*(n-1)-3*(2*n-1)*(-1)^n+5)/8", ")); \\ Bruno Berselli, Jun 27 2011
    

Formula

From Bruno Berselli, Jun 27 2011: (Start)
G.f.: x*(1+6*x+16*x^2+6*x^3+x^4)/((1+x)^2*(1-x)^3).
a(n) = (30*n*(n-1)-3*(2*n-1)*(-1)^n+5)/8. (End)