A134153 a(n) = 15*n^2 + 9*n + 1.
1, 25, 79, 163, 277, 421, 595, 799, 1033, 1297, 1591, 1915, 2269, 2653, 3067, 3511, 3985, 4489, 5023, 5587, 6181, 6805, 7459, 8143, 8857, 9601, 10375, 11179, 12013, 12877, 13771, 14695, 15649, 16633, 17647, 18691, 19765, 20869, 22003, 23167
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[1 + 9 n + 15 n^2, {n, 0, 50}] Table[Sum[k^4, {k, 1, 5m + 1}]/Sum[k^2, {k, 1, 5m + 1}], {m, 0, 10}]
-
PARI
a(n)=15*n^2+9*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 15*n^2 + 9*n + 1.
a(n) = (3*(5*n + 1)^2 + 3*(5*n + 1) - 1)/5.
a(n) = (Sum_{k=1..5*n+1} k^4) / (Sum_{k=1..5*n+1} k^2).
G.f.: -(1+22*x+7*x^2)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
Extensions
Offset corrected and some punctuation added by R. J. Mathar, Jul 09 2009
Comments