1, 5, 15, 23, 33, 41, 53, 75, 89, 99, 105, 113, 153, 155, 165, 189, 215, 239, 249, 261, 281, 293, 323, 341, 363, 371, 375, 405, 411, 419, 431, 473, 519, 543, 545, 561, 575, 629, 659, 699, 725, 741, 743, 765, 785, 803, 831, 849, 893, 905, 915, 923, 933, 935
Offset: 1
A120340
Sequence of pairs numerator(s(n)), denominator(s(n)) where s(n) is the n-th partial sum of 1/A119751(n).
Original entry on oeis.org
1, 1, 4, 3, 13, 9, 302, 207, 43255, 29601, 58966432, 40346163, 1700782246897, 1163704379409, 687683872186748, 470524470741039, 209415712651415308217, 143285523403473419397, 552462361711804327497414320
Offset: 1
a(5)=13, a(6)=9 since s(3)=1+1/3+1/9=13/9.
This is not really a sequence. The standard OEIS convention would be to split this into two cross-referenced sequences with keyword "frac". -
N. J. A. Sloane, Jul 22 2006
A119752
a(1)=2; a(n)=first even number greater than a(n-1) such that a(i)+a(n)+1 is prime for all i=1,2,...,n.
Original entry on oeis.org
2, 8, 14, 44, 224, 638, 1274, 4004, 675404, 2203958, 3075158, 6195234164, 77989711184, 4566262987328
Offset: 1
-
R:= [2]: count:= 1:
for k from 4 by 2 while count < 11 do
if isprime(2*k+1) and andmap(isprime, [seq(R[i]+k+1,i=1..count)]) then
R:= [op(R),k]; count:= count+1
fi
od:
R; # Robert Israel, Mar 06 2023
-
Table[If[n == 1, a[1] = 2, j = a[n - 1] + 2; While[a[n] = j; !
AllTrue[Table[a[i] + a[n] + 1, {i, 1, n}], PrimeQ], j += 2]; j]
, {n, 1, 9}] (* Robert Price, Apr 03 2019 *)
-
isok(va, k, n) = if (isprime(2*k+1), for (i=1, n-1, if (! isprime(va[i]+k+1), return(0))); return(1));
lista(nn) = my(va=vector(nn)); va[1]=2; for (n=2, nn, my(k=va[n-1]+2); while (!isok(va, k, n), k+=2); va[n] = k); va; \\ Michel Marcus, Mar 06 2023
A113875
Slowest growing sequence of primes having the prime-pairwise-average property: if i
Original entry on oeis.org
3, 7, 19, 139, 859, 8179, 173059, 1026199, 1827139, 15828679, 13187242759, 18732483199, 912492556939, 9130567625119
Offset: 1
The pairwise averages of {3,7,19} are the primes {5,11,13}.
-
s={3, 7}; i=5; Do[While[ !And@@PrimeQ[(s+Prime[i])/2], i++ ]; AppendTo[s, Prime[i]]; i++, {n, 3, 10}]; s
A127257
a(n) is the initial element of the sequence A(n) defined exactly like A119752 but with the additional condition that each of its elements must not be contained in any of the sequences A(k) for k < n.
Original entry on oeis.org
2, 6, 18, 20, 50, 68, 74, 78, 90, 96, 134, 138, 156, 200, 204, 228, 278, 288, 296, 306, 326, 338, 378, 384, 398, 404, 440, 464, 468, 504, 510, 524, 530, 546, 600, 608, 644, 660, 704, 726, 740, 774, 828, 854, 870, 930, 938, 944, 966, 986, 1008, 1034, 1068
Offset: 1
Comments
Examples
Crossrefs