A120007 Mobius transform of sum of prime factors of n with multiplicity (A001414).
0, 2, 3, 2, 5, 0, 7, 2, 3, 0, 11, 0, 13, 0, 0, 2, 17, 0, 19, 0, 0, 0, 23, 0, 5, 0, 3, 0, 29, 0, 31, 2, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 7, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 2, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 3, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Factor.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
Crossrefs
Programs
-
Haskell
a120007 1 = 0 a120007 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf | otherwise = 0 where spf = a020639 n -- Reinhard Zumkeller, Sep 19 2011
-
Mathematica
Table[If[Length@ # == 1, #[[1, 1]], 0] &@ FactorInteger@ n, {n, 96}] /. 1 -> 0 (* Michael De Vlieger, Jun 19 2016 *) Table[If[PrimePowerQ[n],FactorInteger[n][[1,1]],0],{n,100}] (* Harvey P. Dale, Jan 25 2020 *)
-
PARI
A120007(n) = { my(v); if(isprimepower(n, &v), v, 0); }; \\ Antti Karttunen, Jan 31 2021
Formula
If n is a prime power p^k, k>0, a(n) = p; otherwise a(n) = 0.
Dirichlet g.f. sum_{p prime} p/(p^s-1) = sum_{k>0} primezeta(ks-1).
a(n) = A061397(A007947(n)). - Reinhard Zumkeller, Sep 19 2011, corrected by Antti Karttunen, Jan 31 2021
a(n) = Sum_{k=2..n} k*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 17 2016
If A297109(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A297109(n)). - Antti Karttunen, Feb 01 2021
Comments