cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120007 Mobius transform of sum of prime factors of n with multiplicity (A001414).

Original entry on oeis.org

0, 2, 3, 2, 5, 0, 7, 2, 3, 0, 11, 0, 13, 0, 0, 2, 17, 0, 19, 0, 0, 0, 23, 0, 5, 0, 3, 0, 29, 0, 31, 2, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 7, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 2, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 3, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Same as A014963, except this function is zero when n is not a prime power, whereas A014963 is one.
Moreover, this sequence, A014963, A297108 and A297109 partition the natural numbers to identical equivalence classes: For all i, j >= 1, a(i) = a(j) <=> A014963(i) = A014963(j) <=> A297108(i) = A297108(j) <=> A297109(i) = A297109(j). - Antti Karttunen, Feb 01 2021

Crossrefs

Cf. A000040, A001414, A007947, A014963, A010051, A010055, A061397, A070939, A140508 (Möbius transform of this sequence), A297108, A297109.

Programs

  • Haskell
    a120007 1 = 0
    a120007 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf
              | otherwise = 0
              where spf = a020639 n
    -- Reinhard Zumkeller, Sep 19 2011
    
  • Mathematica
    Table[If[Length@ # == 1, #[[1, 1]], 0] &@ FactorInteger@ n, {n, 96}] /. 1 -> 0 (* Michael De Vlieger, Jun 19 2016 *)
    Table[If[PrimePowerQ[n],FactorInteger[n][[1,1]],0],{n,100}] (* Harvey P. Dale, Jan 25 2020 *)
  • PARI
    A120007(n) = { my(v); if(isprimepower(n, &v), v, 0); }; \\ Antti Karttunen, Jan 31 2021

Formula

If n is a prime power p^k, k>0, a(n) = p; otherwise a(n) = 0.
Dirichlet g.f. sum_{p prime} p/(p^s-1) = sum_{k>0} primezeta(ks-1).
a(n) = A010055(n) * A007947(n). - Reinhard Zumkeller, Mar 26 2010
a(n) = A061397(A007947(n)). - Reinhard Zumkeller, Sep 19 2011, corrected by Antti Karttunen, Jan 31 2021
a(n) = Sum_{k=2..n} k*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 17 2016
If A297109(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A297109(n)). - Antti Karttunen, Feb 01 2021