A120070 Triangle of numbers used to compute the frequencies of the spectral lines of the hydrogen atom.
3, 8, 5, 15, 12, 7, 24, 21, 16, 9, 35, 32, 27, 20, 11, 48, 45, 40, 33, 24, 13, 63, 60, 55, 48, 39, 28, 15, 80, 77, 72, 65, 56, 45, 32, 17, 99, 96, 91, 84, 75, 64, 51, 36, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 2
Examples
Triangle begins [ 3]; [ 8, 5]; [15, 12, 7]; [24, 21, 16, 9]; [35, 32, 27, 20, 11]; ...
References
- A. K. Dewdney, Reise in das Innere der Mathematik, Birkhäuser, Basel, 2000, pp. 148-154; engl.: A Mathematical Mystery Tour, John Wiley & Sons, N.Y., 1999.
Links
- Stanislav Sykora, Table of n, a(n) for n = 2..79801
- W. Lang: First ten rows and more.
- M. de Frenicle, Methode pour trouver la solutions des problemes par les exclusions, in: Divers ouvrages des mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, page 11.
- Wikipedia, Spin (physics)
- Wikipedia, Hydrogen spectral series
Crossrefs
Programs
-
Mathematica
ColumnForm[Table[n^2 - k^2, {n, 2, 13}, {k, n - 1}], Center] (* Alonso del Arte, Oct 26 2011 *)
-
PARI
nmax=400;a=vector(1+nmax*(nmax-1)\2);idx=1;for(n=2,nmax,for(k=1,n-1,a[idx]=n*n-k*k;idx++)) \\ Stanislav Sykora, Feb 17 2014
-
PARI
T(n,k)=n^2-k^2; for (n=1,10,for(k=1,n-1, print1(T(n,k),", "))); \\ Joerg Arndt, Feb 23 2014
Formula
a(m,n) = m^2 - n^2 for m-1 >= n, otherwise 0.
G.f. for column n=1,2,...: x^(n+1)*((2*n+1)- (2*n-1)*x)/(1-x)^3.
G.f. for rationals r(m,n), n=1,2,...,10 see W. Lang link.
T(r,k) = T(r,0) - T(k-1,0), T(0,0) = 3. - Raphie Frank, Dec 27 2012
Comments