cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094192 Values x of the generator pairs (x, y), x>y of primitive Pythagorean triples, sorted.

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19
Offset: 1

Views

Author

Lekraj Beedassy, May 25 2004

Keywords

Comments

The generated primitive Pythagorean triple (X, Y, Z), with XA120098, Y=A120097, Z=A094194. - Lekraj Beedassy, Jul 12 2006
Ordered A147847 (?). - Paul Curtz, Nov 16 2008

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 145.

Crossrefs

A094193 Values y of the generator pairs (x, y), x>y of primitive Pythagorean triples, sorted on x.

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 1, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 8, 1, 3, 7, 9, 2, 4, 6, 8, 10, 1, 5, 7, 11, 2, 4, 6, 8, 10, 12, 1, 3, 5, 9, 11, 13, 2, 4, 8, 14, 1, 3, 5, 7, 9, 11, 13, 15, 2, 4, 6, 8, 10, 12, 14, 16, 1, 5, 7, 11, 13, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 7, 9, 11, 13, 17, 19, 2, 4, 8, 10, 16
Offset: 1

Views

Author

Lekraj Beedassy, May 25 2004

Keywords

Comments

The generated primitive Pythagorean triple (X, Y, Z), with XA120098, Y=A120097, Z=A094194. - Lekraj Beedassy, Jul 12 2006

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 145.

Crossrefs

A120086 Numerators of expansion of Debye function for n=4: D(4,x).

Original entry on oeis.org

1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120087.
See the W. Lang link under A120080 for more details on the general case D(n,x), n= 1, 2, ... D(4,x) is the e.g.f. of the rational sequence {4*B(n)/(n+4)}, n >= 0. See A227573/A227574. - Wolfdieter Lang, Jul 17 2013

Examples

			Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
		

Crossrefs

Cf. A060054. [From R. J. Mathar, Aug 07 2008]
Cf. A000367/A002445, A027641/A027642, A120097, A227573/A227574 (D(4,x) as e.g.f.). - Wolfdieter Lang, Jul 17 2013

Programs

  • Magma
    [Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n,0,36}] (* Jean-François Alcover, Jun 21 2013 *)
  • SageMath
    [numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n](1 - 4*x/(2*(4+1)) + 2*Sum_{k >= 0} (B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013

A094194 Hypotenuses x^2 + y^2 of primitive Pythagorean triangles, sorted on values x of the generator pair (x, y), x>y.

Original entry on oeis.org

5, 13, 17, 25, 29, 41, 37, 61, 53, 65, 85, 65, 73, 89, 113, 85, 97, 145, 101, 109, 149, 181, 125, 137, 157, 185, 221, 145, 169, 193, 265, 173, 185, 205, 233, 269, 313, 197, 205, 221, 277, 317, 365, 229, 241, 289, 421, 257, 265, 281, 305, 337, 377, 425, 481, 293
Offset: 1

Views

Author

Lekraj Beedassy, May 25 2004

Keywords

Comments

For ordered hypotenuses of primitive Pythagorean triangles see A020882.
The hypotenuse Z of the primitive Pythagorean triple (X, Y, Z) with Xy (x and y coprime and not both odd) using the relation Z = x^2 + y^2. The even leg is 2*x*y and the odd leg is x^2 - y^2. [From Lekraj Beedassy, May 06 2010]

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 145.

Crossrefs

Extensions

Inserted a sqrt(.) operation in the definition - R. J. Mathar, Apr 12 2010
Deleted incorrect sqrt in definition (based on author's initial comment) - Aaron Kastel, Oct 30 2012

A120098 Short leg of primitive Pythagorean triangle corresponding to hypotenuse A094194.

Original entry on oeis.org

3, 5, 8, 7, 20, 9, 12, 11, 28, 33, 13, 16, 48, 39, 15, 36, 65, 17, 20, 60, 51, 19, 44, 88, 85, 57, 21, 24, 119, 95, 23, 52, 104, 133, 105, 69, 25, 28, 84, 140, 115, 75, 27, 60, 120, 161, 29, 32, 96, 160, 207, 175, 135, 87, 31, 68, 136, 204, 225, 189, 145, 93, 33, 36
Offset: 1

Views

Author

Lekraj Beedassy, Jun 08 2006

Keywords

Crossrefs

Cf. A120097.
Showing 1-5 of 5 results.