cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120271 a(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)).

Original entry on oeis.org

1, 3, 7, 23, 121, 21, 173, 1597, 17927, 127469, 129317, 43619, 44081, 44521, 1033223, 13538159, 395369371, 132680013, 400467919, 402757063, 1214947859, 1221110939, 50305908619, 50529880549, 101470376303, 509322834499, 8691337402883
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a(n) is squarefree except for n = 5, 14, 49, ... where squared prime factors are 11, 211, 479, ...
a(n)/A128646(n) is the asymptotic mean over the positive integers of the number of prime divisors that are not greater than prime(n), counted with multiplicity (cf. A007814, A169611, A356006). - Amiram Eldar, Jul 23 2022

Crossrefs

Cf. A128646 (denominators), A119686, A006093, A000040.

Programs

  • Maple
    R:= [seq(1/(ithprime(k)-1),k=1..40)]:
    S:= ListTools:-PartialSums(R):
    A:= map(numer,S); # Robert Israel, Jan 12 2025
  • Mathematica
    Numerator[Table[Sum[1/(Prime[i]-1),{i,1,n}],{n,1,50}]]
    Accumulate[1/(Prime[Range[30]]-1)]//Numerator (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(prime(k)-1))); \\ Michel Marcus, Oct 02 2016

Formula

a(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)).
a(n) = A078456(n) * A135212(n). - Alexander Adamchuk, Nov 23 2007