A120304 Catalan numbers minus 2.
-1, -1, 0, 3, 12, 40, 130, 427, 1428, 4860, 16794, 58784, 208010, 742898, 2674438, 9694843, 35357668, 129644788, 477638698, 1767263188, 6564120418, 24466267018, 91482563638, 343059613648, 1289904147322, 4861946401450, 18367353072150, 69533550916002, 263747951750358
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2. [The sequence here begins 1, 1, 1, 3, 12, 40, 130, 427, 1428, 4860, ...]
Programs
-
Maple
a:= n-> binomial(2*n, n)/(n+1) -2: seq(a(n), n=0..30); # Alois P. Heinz, Jun 13 2014
-
Mathematica
Table[(2n)!/n!/(n+1)!-2,{n,0,30}] CatalanNumber[Range[0,30]]-2 (* Harvey P. Dale, May 03 2019 *)
-
MuPAD
combinat::dyckWords::count(n)-2 $ n = 0..38; // Zerinvary Lajos, May 08 2008
-
PARI
a(n) = binomial(2*n, n)/(n+1)-2; \\ Altug Alkan, Dec 17 2017
Formula
a(n) = A000108(n) - 2.
a(n) = (2n)!/(n!*(n+1)!) - 2.
(n+1)*a(n) + 2*(-3*n+1)*a(n-1) + (9*n-13)*a(n-2) + 2*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, May 30 2014
Comments