A123219 Expansion of -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)).
1, 1, 81, 2401, 83521, 2825761, 96059601, 3262808641, 110841719041, 3765342321601, 127910874833361, 4345203949621921, 147609026049038401, 5014361666349715681, 170340687719412376401, 5786569020271612560001
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..653
- Index entries for linear recurrences with constant coefficients, signature (29,174,-174,-29,1).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)))); // G. C. Greubel, Oct 12 2018 -
Maple
seq(coeff(series(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 13 2018
-
Mathematica
LinearRecurrence[{29,174,-174,-29,1},{1,1,81,2401,83521},20] (* Harvey P. Dale, Jun 01 2018 *)
-
PARI
x='x+O('x^30); Vec(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1))) \\ G. C. Greubel, Oct 12 2018
Formula
G.f.: -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Jan 04 2013
Extensions
New name from Colin Barker, Jan 04 2013
Edited by Joerg Arndt, Oct 13 2018