A057137
Concatenate next digit at right hand end (where the next digit after 9 is again 0).
Original entry on oeis.org
0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
- T. D. Noe and Hieronymus Fischer, Table of n, a(n) for n = 0..200 (terms up to 100 from T. D. Noe)
- Clifford Pickover, Triangle of the Gods
- Index entries for linear recurrences with constant coefficients, signature (10,0,0,0,0,0,0,0,0,1,-10).
Alternative progression for n >= 10 compared with
A007908 and
A014824.
-
A057137:=n->floor((137174210/1111111111)*10^n); seq(A057137(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
-
a[n_]:=Floor[137174210/1111111111*10^n]; Array[a,19,0] (* Robert G. Wilson v, Apr 18 2014 *)
-
A057137(n)=sum(i=1,n,i%10*10^(n-i)) \\ M. F. Hasler, Jan 13 2013
-
A057137(n)=137174210*10^n\1111111111 \\ M. F. Hasler, Jan 13 2013
-
def A057137(n): s = '0123456789'; return int((n+1)//10*s + s[:(n+1)%10]) # Ya-Ping Lu, Apr 08 2025
A120821
a(n) consecutive digits ascending beginning with the digit 3 give a prime.
Original entry on oeis.org
1, 179, 529, 62625
Offset: 1
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[2+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120822
a(n) consecutive digits ascending beginning with the digit 4 give a prime.
Original entry on oeis.org
8 is a term since 45678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[3+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120820
a(n) consecutive digits ascending beginning with the digit 2 give a prime.
Original entry on oeis.org
1, 2, 8, 82, 118, 158, 2122, 2242, 2388
Offset: 1
8 is a term since 23456789 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[1+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120823
a(n) consecutive digits ascending beginning with the digit 5 give a prime..
Original entry on oeis.org
1, 29, 269, 689
Offset: 1
29 is a term since the 29-digit number 56789012345678901234567890123 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[4+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 9000}]; lst
A120824
a(n) consecutive digits ascending beginning with the digit 6 give a prime.
Original entry on oeis.org
2, 6, 36, 122, 336, 82812
Offset: 1
6 is a term since 678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[5+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
A120825
a(n) consecutive digits ascending beginning with the digit 7 give a prime.
Original entry on oeis.org
1, 5, 15, 51, 8411
Offset: 1
1 is here because 7 is prime.
5 is here because 78901 is prime.
15 is here because 789012345678901 is a prime.
51 is here because 789012345678901234567890123456789012345678901234567 is prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[6+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
A120826
a(n) consecutive digits ascending beginning with the digit 8 give a prime.
Original entry on oeis.org
2, 82, 152, 7066, 84892
Offset: 1
2 is a term since 89 is a prime.
82 is a term because 8901234567890123456789012345678901234567890123456789012345678901234567890123456789 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[7+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
A120827
a(n) consecutive digits ascending beginning with the digit 9 give a prime.
Original entry on oeis.org
13 is a term since 9012345678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[8+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
Flatten[Position[Table[FromDigits[PadRight[{},n,{9,0,1,2,3,4,5,6,7,8}]],{n,100}],?PrimeQ]] (* _Harvey P. Dale, Sep 06 2015 *)
A120828
Numbers k such that the concatenation of n successive descending digits (1,0,9,8,7,...) starting with 1 is prime.
Original entry on oeis.org
3, 5, 35, 139, 153, 253, 1053, 2015, 3703, 6933, 8173, 11959
Offset: 1
5 is a term since 10987 is a prime.
-
filter:= proc(n) local i; isprime( add(10^(n-1-i)*(1-i mod 10), i=0..n-1)) end proc:
select(filter, [$1..4000]); # Robert Israel, Mar 08 2023
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[2-Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 6000}]; lst
Showing 1-10 of 11 results.
Comments