Original entry on oeis.org
171, 277, 367, 561, 567, 18881
Offset: 1
a(1) = 12345678901234567890...01234567890...012345678901 = A057137(171) is the first prime term in A057137.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61, 298.
Cf.
A006055,
A057137,
A120828,
A120820,
A120821,
A120822,
A120823,
A120824,
A120825,
A120826,
A120827.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
IntegerLength[Select[Table[FromDigits[PadRight[{},n,{1,2,3,4,5,6,7,8,9,0}]],{n,1,1001,2}],PrimeQ]] (* Harvey P. Dale, Feb 07 2024 *)
-
N=0;for(n=1,600,if(ispseudoprime(N=10*N+n%10),print1(n", "))) \\ Charles R Greathouse IV, May 10 2014 (Comment: Surprisingly, this is faster than calling ispseudoprime() only when n ends in 1 or 7, even when much larger N's are considered, e.g., up to 3000. - M. F. Hasler, Apr 14 2024)
-
from sympy import isprime
L = ['8901', '234567']; s = '1234567'; c = len(s); m = 0
while c < 18881:
s += L[m%2]; c = len(s); m += 1
if isprime(int(s)): print(c, end = ', ') # Ya-Ping Lu, Jan 24 2025
A120821
a(n) consecutive digits ascending beginning with the digit 3 give a prime.
Original entry on oeis.org
1, 179, 529, 62625
Offset: 1
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[2+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120822
a(n) consecutive digits ascending beginning with the digit 4 give a prime.
Original entry on oeis.org
8 is a term since 45678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[3+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120820
a(n) consecutive digits ascending beginning with the digit 2 give a prime.
Original entry on oeis.org
1, 2, 8, 82, 118, 158, 2122, 2242, 2388
Offset: 1
8 is a term since 23456789 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[1+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 10000}]; lst
A120823
a(n) consecutive digits ascending beginning with the digit 5 give a prime..
Original entry on oeis.org
1, 29, 269, 689
Offset: 1
29 is a term since the 29-digit number 56789012345678901234567890123 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[4+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 9000}]; lst
A120824
a(n) consecutive digits ascending beginning with the digit 6 give a prime.
Original entry on oeis.org
2, 6, 36, 122, 336, 82812
Offset: 1
6 is a term since 678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[5+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
A120826
a(n) consecutive digits ascending beginning with the digit 8 give a prime.
Original entry on oeis.org
2, 82, 152, 7066, 84892
Offset: 1
2 is a term since 89 is a prime.
82 is a term because 8901234567890123456789012345678901234567890123456789012345678901234567890123456789 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[7+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
A120827
a(n) consecutive digits ascending beginning with the digit 9 give a prime.
Original entry on oeis.org
13 is a term since 9012345678901 is a prime.
-
fQ[n_] := PrimeQ@ FromDigits@ Mod[8+Range@n, 10]; lst = {}; Do[ If[fQ@n, AppendTo[lst, n]; Print@n], {n, 5000}]; lst
Flatten[Position[Table[FromDigits[PadRight[{},n,{9,0,1,2,3,4,5,6,7,8}]],{n,100}],?PrimeQ]] (* _Harvey P. Dale, Sep 06 2015 *)
Showing 1-8 of 8 results.
Comments