cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330926 a(n) = Sum_{k=1..n} (ceiling(n/k) mod 2).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 2, 5, 3, 4, 3, 6, 5, 6, 3, 7, 6, 7, 6, 9, 6, 7, 6, 11, 9, 10, 7, 10, 9, 10, 9, 14, 11, 12, 9, 13, 12, 13, 10, 15, 14, 15, 14, 17, 12, 13, 12, 19, 17, 18, 15, 18, 17, 18, 15, 20, 17, 18, 17, 22, 21, 22, 17, 23, 20, 21, 20, 23, 20, 21, 20, 27, 26, 27, 22, 25, 22, 23, 22
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2020

Keywords

Comments

a(n) = number of terms among {ceiling(n/k)}, 1 <= k <= n, that are odd.

Crossrefs

Programs

  • Maple
    b:= n-> add((-1)^d, d=numtheory[divisors](n)):
    a:= proc(n) option remember; `if`(n>0, 1+b(n-1)+a(n-1), 0) end:
    seq(a(n), n=1..80);  # Alois P. Heinz, May 25 2020
  • Mathematica
    Table[Sum[Mod[Ceiling[n/k], 2], {k, 1, n}], {n, 1, 80}]
    Table[n - Sum[DivisorSum[k, (-1)^(# + 1) &], {k, 1, n - 1}], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[x/(1 - x) (1 + Sum[x^(2 k)/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, ceil(n/k) % 2); \\ Michel Marcus, May 25 2020
    
  • Python
    from math import isqrt
    def A330926(n): return n+(s:=isqrt(n-1))**2-((t:=isqrt(m:=n-1>>1))**2<<1)-(sum((n-1)//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023

Formula

G.f.: (x/(1 - x)) * (1 + Sum_{k>=1} x^(2*k) / (1 + x^k)).
a(n) = n - Sum_{k=1..n-1} A048272(k).
a(n) = A075997(n-1) + 1.

A138618 Triangle of exponentials of Mangoldt function M(n) read by rows, in which row products give the natural numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, May 14 2008

Keywords

Comments

Row sums are A001414. This table is similar to A139547 and A120885.
Cumulative column products are A003418, A139550, A139552, A139554.

Examples

			1 = 1
2*1 = 2
3*1*1 = 3
2*2*1*1 = 4
5*1*1*1*1 = 5
1*3*2*1*1*1 = 6
7*1*1*1*1*1*1 = 7
2*2*1*2*1*1*1*1 = 8
3*1*3*1*1*1*1*1*1 = 9
1*5*1*1*2*1*1*1*1*1 = 10
11*1*1*1*1*1*1*1*1*1*1 = 11
1*1*2*3*1*2*1*1*1*1*1*1 = 12
13*1*1*1*1*1*1*1*1*1*1*1*1 = 13
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[If[Mod[n, k] == 0, Exp[MangoldtLambda[n/k]], 1], {k, 1, n}], {n, 1, 14}]] (* Mats Granvik, May 23 2013 *)
  • PARI
    M(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
    T(n,k) = if (n % k, 1, M(n/k));
    row(n) = vector(n, k, T(n,k)); \\ Michel Marcus, Mar 03 2023

Formula

T(n,k) = A014963(n/k) if n mod k = 0, otherwise 1. - Mats Granvik, May 23 2013

A333194 a(n) = Sum_{k=1..n} (ceiling(n/k) mod 2) * k.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 11, 11, 19, 16, 21, 21, 30, 30, 37, 29, 45, 45, 51, 51, 66, 56, 67, 67, 88, 83, 96, 84, 105, 105, 112, 112, 144, 130, 147, 135, 159, 159, 178, 162, 197, 197, 208, 208, 241, 209, 232, 232, 277, 270, 290, 270, 309, 309, 324, 308, 357, 335, 364, 364
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= n-> add(d, d=select(x-> x::odd, numtheory[divisors](n))):
    a:= proc(n) option remember; n+`if`(n<2, 0, a(n-1))-b(n-1) end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 25 2020
  • Mathematica
    Table[Sum[Mod[Ceiling[n/k], 2] k, {k, 1, n}], {n, 1, 60}]
    Table[n (n + 1)/2 - Sum[DivisorSum[k, (-1)^(k/# + 1) # &], {k, 1, n - 1}], {n, 1, 60}]
    nmax = 60; CoefficientList[Series[x/(1 - x) (1/(1 - x)^2 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, (ceil(n/k) % 2)*k); \\ Michel Marcus, May 26 2020

Formula

G.f.: (x/(1 - x)) * (1/(1 - x)^2 - Sum_{k>=1} k * x^k / (1 + x^k)).
a(n) = n*(n + 1)/2 - Sum_{k=1..n-1} A000593(k).
a(n) = A000217(n) - A078471(n-1).
Showing 1-3 of 3 results.