A120908 Sum of the lengths of the drops in all ternary words of length n on {0,1,2}. The drops of a ternary word on {0,1,2} are the subwords 10,20 and 21, their lengths being the differences 1, 2 and 1, respectively.
0, 4, 24, 108, 432, 1620, 5832, 20412, 69984, 236196, 787320, 2598156, 8503056, 27634932, 89282088, 286978140, 918330048, 2927177028, 9298091736, 29443957164, 92980917360, 292889889684, 920511081864, 2887057484028
Offset: 1
Examples
a(2)=4 because the ternary words 00,01,02,11,12 and 22 have no drops, each of the words 10 and 21 has one drop of length 1 and the word 20 has one drop of length 2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..400
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Programs
-
Magma
[4*(n-1)*3^(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
-
Maple
seq(4*(n-1)*3^(n-2),n=1..27);
-
Mathematica
Table[4*(n-1)*3^(n-2), {n, 30}] (* Wesley Ivan Hurt, Jan 28 2014 *) LinearRecurrence[{6,-9},{0,4},30] (* Harvey P. Dale, Jul 14 2023 *)
-
PARI
a(n) = 4*(n-1)*3^(n-2); \\ Altug Alkan, May 16 2018
Formula
a(n) = 4*(n-1)*3^(n-2).
G.f.: 4*z^2/(1-3*z)^2.
Comments