cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A269276 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 0, 24, 108, 0, 108, 1368, 1620, 0, 432, 13896, 46872, 20412, 0, 1620, 127512, 1104264, 1365336, 236196, 0, 5832, 1104264, 23549400, 74853576, 36673560, 2598156, 0, 20412, 9211608, 474819408, 3719884392, 4684312584, 938176344
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Table starts
.0........4..........24............108...............432................1620
.0......108........1368..........13896............127512.............1104264
.0.....1620.......46872........1104264..........23549400...........474819408
.0....20412.....1365336.......74853576........3719884392........174924572760
.0...236196....36673560.....4684312584......542973139128......59587625651904
.0..2598156...938176344...279339197256....75556007986536...19356924219624936
.0.27634932.23230366488.16128206816904.10181956012212600.6090616046325570480

Examples

			Some solutions for n=3 k=4
..0..2..0..1. .0..0..0..0. .0..2..0..0. .0..0..0..0. .0..0..2..0
..0..2..3..1. .2..2..0..0. .2..2..3..1. .2..0..2..1. .0..2..2..3
..2..1..0..2. .3..2..1..1. .0..1..0..2. .0..0..1..3. .3..1..1..0
		

Crossrefs

Row 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46

A269214 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 0, 24, 96, 0, 108, 768, 1152, 0, 432, 6528, 18048, 11424, 0, 1620, 49536, 308544, 361728, 103488, 0, 5832, 360960, 4744704, 12548544, 6712704, 889056, 0, 20412, 2546304, 70371048, 394072704, 474091776, 118872576, 7375872, 0, 69984, 17563392
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
.0........4..........24............108...............432................1620
.0.......96.........768...........6528.............49536..............360960
.0.....1152.......18048.........308544...........4744704............70371048
.0....11424......361728.......12548544.........394072704.........11985002256
.0...103488.....6712704......474091776.......30541426560.......1910809190712
.0...889056...118872576....17118725376.....2267772823680.....292321215814512
.0..7375872..2039727744...599456856000...163535201141376...43468685827935816
.0.59698464.34214296320.20531285093184.11544796423498368.6331185189881558208

Examples

			Some solutions for n=3 k=4
..2..2..3..2. .2..2..2..3. .0..1..0..2. .0..0..0..2. .2..2..0..0
..0..2..0..2. .0..0..1..0. .1..1..3..0. .0..1..2..0. .0..0..2..3
..2..1..0..1. .0..1..0..1. .0..1..0..2. .0..0..0..0. .0..0..1..3
		

Crossrefs

Column 2 is A269091.
Row 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 30*a(n-1) -237*a(n-2) +180*a(n-3) -36*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 20] for n>21
k=6: [order 42] for n>43
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 10*a(n-1) -13*a(n-2) -60*a(n-3) -36*a(n-4)
n=3: [order 8]
n=4: [order 20]
n=5: [order 52] for n>53

A269097 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or vertically adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 4, 24, 96, 24, 108, 1152, 1152, 108, 432, 11424, 31296, 11424, 432, 1620, 103488, 715320, 715320, 103488, 1620, 5832, 889056, 15024096, 37963968, 15024096, 889056, 5832, 20412, 7375872, 300056400, 1856325000, 1856325000, 300056400, 7375872
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Table starts
......0..........4.............24................108....................432
......4.........96...........1152..............11424.................103488
.....24.......1152..........31296.............715320...............15024096
....108......11424.........715320...........37963968.............1856325000
....432.....103488.......15024096.........1856325000...........211625837280
...1620.....889056......300056400........86415197088.........22984646281176
...5832....7375872.....5795398368......3892946216856.......2416707037884480
..20412...59698464...109294975080....171307237216320.....248267055360211392
..69984..474360768..2024660774592...7406621052177000...25062609875880382656
.236196.3715826016.36988673403168.315868041326151072.2495854741014485439624

Examples

			Some solutions for n=3 k=4
..0..1..3..2. .0..0..2..2. .2..2..2..3. .0..2..2..0. .0..0..1..1
..0..3..1..0. .0..2..3..3. .0..2..2..2. .0..2..0..0. .0..2..0..0
..0..2..3..2. .1..1..1..3. .2..0..0..3. .0..2..3..2. .2..2..1..1
		

Crossrefs

Column 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 14] for n>15
k=6: [order 26] for n>27
k=7: [order 64] for n>65

A269152 T(n,k) = Number of n X k 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 4, 24, 80, 24, 108, 768, 768, 108, 432, 6224, 13904, 6224, 432, 1620, 46464, 220968, 220968, 46464, 1620, 5832, 330192, 3277728, 7002040, 3277728, 330192, 5832, 20412, 2270592, 46576336, 208984848, 208984848, 46576336, 2270592, 20412
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
......0.........4............24..............108.................432
......4........80...........768.............6224...............46464
.....24.......768.........13904...........220968.............3277728
....108......6224........220968..........7002040...........208984848
....432.....46464.......3277728........208984848.........12637025328
...1620....330192......46576336.......6004186984........738478504448
...5832...2270592.....642676704.....167970539096......42119837369168
..20412..15251152....8680278136....4607603633440....2359047063894464
..69984.100647168..115349343264..124496158984840..130272136732736736
.236196.655139152.1513379596864.3323815506994632.7113223023541150960

Examples

			Some solutions for n=3, k=4
..2..2..3..1. .0..2..2..2. .2..0..1..1. .0..3..3..1. .2..2..3..3
..3..2..3..3. .3..3..3..2. .2..0..1..0. .1..1..3..1. .3..3..1..2
..0..2..3..3. .3..2..2..2. .1..0..0..2. .3..3..3..1. .2..3..3..3
		

Crossrefs

Column 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 12*a(n-1) -38*a(n-2) +12*a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 20] for n>22
k=5: [order 42] for n>45

A269186 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 4, 24, 48, 24, 108, 384, 384, 108, 432, 2736, 5888, 2736, 432, 1620, 18336, 80112, 80112, 18336, 1620, 5832, 118032, 1031344, 2097552, 1031344, 118032, 5832, 20412, 739008, 12791896, 52394312, 52394312, 12791896, 739008, 20412, 69984, 4533744
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
......0.........4...........24.............108................432
......4........48..........384............2736..............18336
.....24.......384.........5888...........80112............1031344
....108......2736........80112.........2097552...........52394312
....432.....18336......1031344........52394312.........2563440512
...1620....118032.....12791896......1265974992.......121792778352
...5832....739008....154606864.....29881402560......5665397992608
..20412...4533744...1833130768....693021071760....259306140235672
..69984..27384288..21416076480..15854541802056..11718368891185840
.236196.163381968.247279304248.358760880894864.524154208020159720

Examples

			Some solutions for n=3 k=4
..3..3..3..2. .2..3..1..3. .1..1..2..0. .2..2..2..3. .3..1..2..3
..1..1..3..1. .2..3..3..2. .0..0..0..0. .0..0..2..0. .1..3..3..3
..3..1..1..1. .3..3..2..2. .1..1..0..2. .2..2..0..0. .3..1..1..3
		

Crossrefs

Column 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 10*a(n-1) -21*a(n-2) -20*a(n-3) -4*a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 16] for n>17
k=5: [order 40] for n>41

A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.

Original entry on oeis.org

0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.

Examples

			The triangle T(n, k) begins:
n\k 0     1      2      3       4       5       6      7        8       9
0:  0     1
1:  0     3      4      1
2:  0     9     24     22       8       1
3:  0    27    108    171     136      57      12       1
4:  0    81    432    972    1200     886     400     108      16       1
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.

Crossrefs

Row 2: row 5 of A158454.
Row 3: row 2 of A220665.
Row 4: row 5 of A219234.

Programs

  • Mathematica
    row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
  • Maxima
    g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
    a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
    T : []$
    for i:1 thru 11 do
      T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
    T;
    
  • PARI
    T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
    tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018

Formula

T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
T(n,1) = A000244(n).
T(n,2) = A120908(n).
T(n,n+1) = A069835(n).
T(n,2*n-1) = A139272(n).
T(n,2*n) = A008586(n).
T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
G.f.: x/(1 - y*(x^2 + 4*x + 3)).

Extensions

Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018

A203230 (n-1)-st elementary symmetric function of the first n terms of A010684.

Original entry on oeis.org

1, 4, 7, 24, 33, 108, 135, 432, 513, 1620, 1863, 5832, 6561, 20412, 22599, 69984, 76545, 236196, 255879, 787320, 846369, 2598156, 2775303, 8503056, 9034497, 27634932, 29229255, 89282088, 94065057, 286978140, 301327047, 918330048
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2011

Keywords

Crossrefs

Cf. A010684, A203231, A120908 (bisection?).

Programs

  • Mathematica
    r = {1, 3, 1, 3, 1, 3};
    s = Flatten[{r, r, r, r, r, r, r, r, r}];
    t[n_] := Part[s, Range[n]]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 32}]     (* A203230 *)

Formula

Conjecture: a(n)=6*a(n-2)-9*a(n-4) with G.f. x*(1+4*x+x^2) / (-1+3*x^2)^2 . - R. J. Mathar, Oct 15 2013

A203231 (n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,1,3,1,3,1,3,1,...).

Original entry on oeis.org

1, 4, 15, 24, 81, 108, 351, 432, 1377, 1620, 5103, 5832, 18225, 20412, 63423, 69984, 216513, 236196, 728271, 787320, 2421009, 2598156, 7971615, 8503056, 26040609, 27634932, 84499119, 89282088, 272629233, 286978140, 875283327, 918330048
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2011

Keywords

Crossrefs

Cf. A010684, A203230, A120908 (bisection).

Programs

  • Mathematica
    r = {3, 1, 3, 1, 3, 1};
    s = Flatten[{r, r, r, r, r, r, r, r, r}];
    t[n_] := Part[s, Range[n]]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 32}]     (* A203231 *)

Formula

Conjecture: a(n) = 6*a(n-2)-9*a(n-4) with G.f. x*(1+4*x+9*x^2) / (-1+3*x^2)^2 . - R. J. Mathar, Oct 15 2013

A120907 Triangle read by rows: T(n,k) is the number of ternary words of length n on {0,1,2} having sum of the lengths of the drops equal to k (n>=0, k>=0). The drops of a ternary word on {0,1,2} are the subwords 10,20 and 21, their lengths being the differences 1, 2 and 1, respectively.

Original entry on oeis.org

1, 3, 6, 2, 1, 10, 10, 7, 15, 30, 31, 4, 1, 21, 70, 105, 36, 11, 28, 140, 294, 184, 76, 6, 1, 36, 252, 714, 696, 396, 78, 15, 45, 420, 1554, 2160, 1666, 566, 141, 8, 1, 55, 660, 3102, 5808, 5918, 2990, 995, 136, 19, 66, 990, 5775, 13992, 18348, 12746, 5615, 1280, 226
Offset: 0

Views

Author

Emeric Deutsch, Jul 15 2006

Keywords

Comments

Row n has 2*floor(n/2)+1 terms (i.e. each of the rows 2n and 2n+1 has 2n+1 terms). Row sums are the powers of 3 (A000244). T(n,0)=A000217(n+1) (the triangular numbers). Sum(k*T(n,k),k>=0)=4(n-1)3^(n-2)=A120908(n)=4*A027471(n).

Examples

			T(4,3)=4 because we have 1020,2010,2021 and 2120.
Triangle starts:
1;
3;
6,2,1;
10,10,7;
15,30,31,4,1;
21,70,105,36,11;
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z+t*z)/(1-2*z+z^2-t*z-t*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=1/[(1-z+tz)(1-2z+z^2-tz-tz^2)].
Showing 1-9 of 9 results.