A120934 Least prime p such that the interval [p,p+log(p)] contains n primes.
2, 11, 457, 3251, 165701, 10526557, 495233351, 196039655873, 10687033762033, 79006533276941, 4313367040646743, 1740318019946551931
Offset: 1
Examples
a(2)=11 because p=11 is the first prime with log(p) > 2 and 11+2 is prime.
Links
- K. Soundararajan, The distribution of prime numbers, arXiv:math/0606408 [math.NT], 2006.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture
Crossrefs
Programs
-
Mathematica
i=1; Table[While[p=Prime[i]; PrimePi[p+Log[p]]-PrimePi[p]+1< n, i++ ]; p, {n,5}]
-
PARI
A120934(n) = { my(v = vector(n,k,prime(k)), i = 1); while(v[(i - 2) % n + 1] - v[i] > floor(log(v[i])), v[i] = nextprime(v[(i - 2) % n + 1] + 1); i = i % n + 1; ); return(vecsort(v)[1]) } \\ Florian Baur, Jul 12 2023
Formula
This sequence grows superexponentially; a weak lower bound is a(n) >> (log n)^n. It seems that a(n) > n^n. - Charles R Greathouse IV, Apr 18 2012
A lower bound is a(n) > e^A008407(n). a(n) < b*e^A008407(n), for 2 <= n <= 12, b < 1.49. For 9 <= n <= 12, b < 1.0006. a(13) > 701673591209763173865. - Florian Baur, Jul 12 2023 [Corrected by Pontus von Brömssen, Nov 12 2023]
Extensions
a(12) from Donovan Johnson, Apr 18 2012
Comments