A120944 Composite squarefree numbers.
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a120944 n = a120944_list !! (n-1) a120944_list = filter ((== 1) . a008966) a002808_list -- Reinhard Zumkeller, Dec 19 2011
-
Magma
[n: n in [6..161] | IsSquarefree(n) and not IsPrime(n)]; // Bruno Berselli, Mar 03 2011
-
Maple
select(not(isprime) and numtheory:-issqrfree, [$2..1000]); # Robert Israel, Jul 07 2015
-
Mathematica
lst={};Do[If[SquareFreeQ[n],If[ !PrimeQ[n],AppendTo[lst,n]]],{n,2,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009; updated by Jean-François Alcover, Jun 19 2013 *) Select[Range[200], PrimeNu[#] > 1 && SquareFreeQ[#] &] (* Carlos Eduardo Olivieri, Jul 07 2015 *)
-
PARI
is(n)=issquarefree(n)&&!isprime(n)&&n>1 \\ Charles R Greathouse IV, Apr 11 2012
-
Python
from sympy import factorint def ok(n): f = factorint(n); return len(f) > 1 and all(f[p] < 2 for p in f) print(list(filter(ok, range(1, 162)))) # Michael S. Branicky, Jun 10 2021
-
Python
from math import isqrt from sympy import primepi, mobius def A120944(n): def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n+1, f(n+1) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 02 2024
Formula
From Enrique Pérez Herrero, Apr 01 2012: (Start)
Solutions to floor(omega(x)/bigomega(x))*(1-floor(1/bigomega(x))) = 1, where bigomega is A001222 and omega is A001221.
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2s) - 1 - PrimeZeta(s). (End)
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024
Comments