cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120944 Composite squarefree numbers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Zak Seidov, Aug 19 2006

Keywords

Comments

Intersection of A002808 and A005117: n > 1 such that A008966(n) * (1-A010051(n)) = 1. - Reinhard Zumkeller, Dec 19 2011

Crossrefs

Cf. A000469 (Nonprime squarefree numbers).
Set of powers: A182853.

Programs

  • Haskell
    a120944 n = a120944_list !! (n-1)
    a120944_list = filter ((== 1) . a008966) a002808_list
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Magma
    [n: n in [6..161] | IsSquarefree(n) and not IsPrime(n)]; // Bruno Berselli, Mar 03 2011
    
  • Maple
    select(not(isprime) and numtheory:-issqrfree, [$2..1000]); # Robert Israel, Jul 07 2015
  • Mathematica
    lst={};Do[If[SquareFreeQ[n],If[ !PrimeQ[n],AppendTo[lst,n]]],{n,2,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009; updated by Jean-François Alcover, Jun 19 2013 *)
    Select[Range[200], PrimeNu[#] > 1 && SquareFreeQ[#] &] (* Carlos Eduardo Olivieri, Jul 07 2015 *)
  • PARI
    is(n)=issquarefree(n)&&!isprime(n)&&n>1 \\ Charles R Greathouse IV, Apr 11 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return len(f) > 1 and all(f[p] < 2 for p in f)
    print(list(filter(ok, range(1, 162)))) # Michael S. Branicky, Jun 10 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A120944(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

From Enrique Pérez Herrero, Apr 01 2012: (Start)
Solutions to floor(omega(x)/bigomega(x))*(1-floor(1/bigomega(x))) = 1, where bigomega is A001222 and omega is A001221.
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2s) - 1 - PrimeZeta(s). (End)
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024