A129210 Largest number not the sum of n distinct nonzero squares.
245, 333, 330, 462, 539, 647, 888, 1036, 1177, 1445, 1722, 1990, 2311, 2672, 3047, 3492, 4093, 4613, 5138, 5718, 6379, 7123, 7952, 8676, 9537, 10393, 11558, 12602, 13743, 14863, 16252, 17528, 18957, 20481, 22042, 23678, 25347, 27207, 29092
Offset: 5
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 5..400 (from Bateman et al.)
- Paul T. Bateman, Adolf J. Hildebrand, and George B. Purdy, Sums of distinct squares, Acta Arithmetica 67 (1994), pp. 349-380.
- Franz Halter-Koch, Darstellung natürlicher Zahlen als Summe von Quadraten, Acta Arithmetica 42 (1982), pp. 11-20.
Crossrefs
Cf. A120951 (numbers that are not the sum of 5 distinct nonzero squares).
Formula
Bateman, Hildebrand, & Purdy prove that a(n) = n^3/3 + n^2/2 + sqrt(8)*n^(3/2) + O(n^(5/4)), see their Theorem 1. - Charles R Greathouse IV, Mar 31 2025
Comments