cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120989 Level of the first leaf (in preorder traversal) of a binary tree, summed over all binary trees with n edges. A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

2, 9, 34, 123, 440, 1573, 5642, 20332, 73644, 268090, 980628, 3603065, 13293540, 49234605, 182991450, 682341000, 2551955340, 9570762990, 35985909180, 135628219350, 512302356384, 1939078493154, 7353556121924, 27936898370248, 106313496846200
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2006

Keywords

Comments

a(n) is the number of lattice paths from (0,0) to (n+2,n+2) using E(1,0) and N(0,1) as steps that have exactly two E steps below subdiagonal y = x-1. - Ran Pan, Feb 01 2016
a(n) is the number of permutations pi of [n+3] such that s(pi)=p456...(n+3), where s is West's stack-sorting map and p=132. The same statement is true if p=231 or p=312. - Colin Defant, Jan 14 2019

Examples

			a(1)=2 because for each of the trees / and \ the level of the first leaf is 1.
		

Crossrefs

Programs

  • Magma
    [2*n*(7*n+13)*Binomial(2*n+1,n)/((n+2)*(n+3)*(n+4)): n in [1..30]]; // Vincenzo Librandi, Feb 01 2016
    
  • Maple
    a:=n->2*n*(7*n+13)*binomial(2*n+1,n)/(n+2)/(n+3)/(n+4): seq(a(n),n=1..27);
  • Mathematica
    Table[2 n (7 n + 13) Binomial[2 n + 1, n] / ((n + 2) (n + 3) (n + 4)), {n, 30}] (* Vincenzo Librandi, Feb 01 2016 *)
  • PARI
    a(n)=2*n*(7*n+13)*binomial(2*n+1,n)/prod(i=2,4,n+i) \\ Charles R Greathouse IV, Feb 01 2016

Formula

a(n) = Sum_{k=1..n} k*A120988(n,k).
a(n) = 2*n*(7n+13)*binomial(2n+1,n)/((n+2)(n+3)(n+4)).
G.f.: z*(1+C)*C^4, where C = (1-sqrt(1-4*z))/(2z) is the Catalan function.
G.f.: 2*(1+2*z-sqrt(1-4*z))/(1-2*z+sqrt(1-4*z))^2.
D-finite with recurrence -(n-1)*(7*n+6)*(n+4)*a(n) +2*n*(7*n+13)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Aug 22 2016
a(n) ~ c*4^n*n^(-3/2), with c = 28/sqrt(Pi). - Stefano Spezia, Oct 19 2023