A120989 Level of the first leaf (in preorder traversal) of a binary tree, summed over all binary trees with n edges. A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.
2, 9, 34, 123, 440, 1573, 5642, 20332, 73644, 268090, 980628, 3603065, 13293540, 49234605, 182991450, 682341000, 2551955340, 9570762990, 35985909180, 135628219350, 512302356384, 1939078493154, 7353556121924, 27936898370248, 106313496846200
Offset: 1
Examples
a(1)=2 because for each of the trees / and \ the level of the first leaf is 1.
Links
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016-2017.
Programs
-
Magma
[2*n*(7*n+13)*Binomial(2*n+1,n)/((n+2)*(n+3)*(n+4)): n in [1..30]]; // Vincenzo Librandi, Feb 01 2016
-
Maple
a:=n->2*n*(7*n+13)*binomial(2*n+1,n)/(n+2)/(n+3)/(n+4): seq(a(n),n=1..27);
-
Mathematica
Table[2 n (7 n + 13) Binomial[2 n + 1, n] / ((n + 2) (n + 3) (n + 4)), {n, 30}] (* Vincenzo Librandi, Feb 01 2016 *)
-
PARI
a(n)=2*n*(7*n+13)*binomial(2*n+1,n)/prod(i=2,4,n+i) \\ Charles R Greathouse IV, Feb 01 2016
Formula
a(n) = Sum_{k=1..n} k*A120988(n,k).
a(n) = 2*n*(7n+13)*binomial(2n+1,n)/((n+2)(n+3)(n+4)).
G.f.: z*(1+C)*C^4, where C = (1-sqrt(1-4*z))/(2z) is the Catalan function.
G.f.: 2*(1+2*z-sqrt(1-4*z))/(1-2*z+sqrt(1-4*z))^2.
D-finite with recurrence -(n-1)*(7*n+6)*(n+4)*a(n) +2*n*(7*n+13)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Aug 22 2016
a(n) ~ c*4^n*n^(-3/2), with c = 28/sqrt(Pi). - Stefano Spezia, Oct 19 2023
Comments