A121067 a(n) = the n-th divisor of n^n (when the positive divisors of n^n are written in order from smallest to largest).
1, 2, 9, 8, 625, 8, 117649, 128, 6561, 32, 25937424601, 27, 23298085122481, 112, 375, 32768, 48661191875666868481, 72, 104127350297911241532841, 250, 2401, 1024, 907846434775996175406740561329, 162, 59604644775390625, 2704, 2541865828329
Offset: 1
Keywords
Examples
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64,... is the beginning of the sequence of divisors of 6^6 = 46656. 8 is the 6th term of this sequence of divisors (which is sequence A114334), so a(6) = 8.
Links
- Charlie Neder, Table of n, a(n) for n = 1..388 (first 180 terms from Alois P. Heinz)
Crossrefs
Cf. A000312.
Cf. A000169. [Franklin T. Adams-Watters, Sep 21 2009]
Programs
-
GAP
List([1..30],n->DivisorsInt(n^n)[n]); # Muniru A Asiru, Mar 06 2019
-
Maple
a:= n-> sort([numtheory[divisors](n^(n-1))[]])[n]: seq(a(n), n=1..30); # Alois P. Heinz, Oct 09 2016
-
Mathematica
Table[Divisors[n^n][[n]], {n, 27}] (* Michael De Vlieger, Sep 19 2017 *)
-
PARI
m=27;for(n=1,m,d=divisors(n^n);print1(d[n],",")) \\ Klaus Brockhaus, Aug 14 2006
Formula
a(n) <= A020639(n)^n, with equality for n a prime power. - Charlie Neder, Mar 06 2019
Comments