A121265 Descending dungeons: a(10)=10; for n>10, a(n) = a(n-1) read as if it were written in base n.
10, 11, 13, 16, 20, 30, 48, 76, 132, 420, 1640, 11991, 249459, 14103793, 5358891675, 19563802363305, 3359230167951561129, 181335944930584275675841374, 54416647690014492928933662292768871352, 6605721238793689879501639879905020611382966457124120828, 360539645288616164606228883801608423987740093330992456820074646988075733781927268
Offset: 10
Examples
From _Jianing Song_, May 22 2021: (Start) a(10) = 10; a(11) = 10_11 = 11; a(12) = 11_12 = 13; a(13) = 13_13 = 16; a(14) = 16_14 = 20; a(15) = 20_15 = 30; a(16) = 30_16 = 48; ... (End)
References
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 10..35
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- Brady Haran and N. J. A. Sloane, Dungeon Numbers, Numberphile video (2020). (extra)
Programs
-
Maple
M:=35; a:=list(10..M): a[10]:=10: lprint(10,a[10]); for n from 11 to M do t1:=convert(a[n-1],base,10); a[n]:=add(t1[i]*n^(i-1),i=1..nops(t1)); lprint(n,a[n]); od:
-
Mathematica
nxt[{n_,a_}]:={n+1,FromDigits[IntegerDigits[a],n+1]}; Transpose[ NestList[ nxt,{10,10},20]][[2]] (* Harvey P. Dale, Jul 13 2014 *)
-
PARI
a(n) = {my(x=10); for (b=11, n, x = fromdigits(digits(x, 10), b);); x;} \\ Michel Marcus, May 26 2019
Formula
If a, b >= 10, then a_b is roughly 10^(log(a)log(b)) (all logs are base 10 and "roughly" means it is an upper bound and using floor(log()) gives a lower bound). Equivalently, there exists c > 0 such that for all a, b >= 10, 10^(c log(a)log(b)) <= a_b <= 10^(log(a)log(b)). Thus a_n is roughly 10^product(log(9+i),i=1..n), or equivalently, a_n = 10^10^(n loglog n + O(n)). - David Applegate and N. J. A. Sloane, Aug 25 2006
Comments