Original entry on oeis.org
0, 0, 0, 0, 0, 5, 17, 38, 86, 365, 1575, 11904, 249324, 14103554, 5358891212, 19563802362362, 3359230167951559162, 181335944930584275675837231, 54416647690014492928933662292768862601, 6605721238793689879501639879905020611382966457124102349, 360539645288616164606228883801608423987740093330992456820074646988075733781888309
Offset: 10
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Original entry on oeis.org
0, 0, 0, 0, 0, 5, 17, 38, 86, 365, 1530, 11770, 249015, 14102902, 5358889889, 19563802359728, 3359230167951553969, 181335944930584275675827047, 54416647690014492928933662292768842690, 6605721238793689879501639879905020611382966457124063495, 360539645288616164606228883801608423987740093330992456820074646988075733781755269
Offset: 10
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Original entry on oeis.org
0, 0, 0, 0, 0, -2, -3, -3, 1, -72, 3303, 10788, 287767, -2441508, 41165366097, 1073195273432754, 155912367904160034530, 3136560083478359027185613587, 539970867097445764756784886568605205005, -6513790584274345956893756600832505179138091590508595552
Offset: 0
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
A121263
Descending dungeons: see Comments lines for definition.
Original entry on oeis.org
10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 65, 87, 135, 239, 463, 943, 1967, 4143, 8751, 18479, 38959, 103471, 306223, 942127, 2932783, 9153583, 28562479, 89028655, 277145647, 861652015, 2675637295, 10173443119, 41132125231, 168836688943, 695134284847
Offset: 10
For example,
10
..11
....12
......13
........14
..........15
............16
..............17
................18
..................19
....................20
......................21
........................22
..........................23
is equal to 239.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- N. J. A. Sloane, Table of n, a(n) for n = 10..109
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, and N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- Brady Haran and N. J. A. Sloane, Dungeon Numbers, Numberphile video (2020). (extra)
-
M:=100; a:=list(10..M): a[10]:=10: lprint(10,a[10]); for n from 11 to M do b:=n; for i from n-1 by -1 to 11 do t1:=convert(i,base,10); b:=add(t1[j]*b^(j-1),j=1..nops(t1)): od: a[n]:=b; lprint(n,a[n]); od: # N. J. A. Sloane
asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b # N. J. A. Sloane
-
def a(n):
a_of_n = [((10 + int(i))) for i in range(n)]
while len(a_of_n) != 1:
exponent = 0
a_of_n [-2] = list(str(a_of_n [-2]))
for i in range(len(a_of_n [-2])):
a_of_n [-2] [-(i+1)] = int(a_of_n [-2] [-(i+1)])
a_of_n [-2] [-(i+1)] *= ((a_of_n [-1]) ** exponent)
exponent += 1
a_of_n [-2] = sum(a_of_n [-2])
a_of_n = a_of_n [:((len(a_of_n))-1)]
return (a_of_n [0])
# Noah J. Crandall, Dec 07 2020
A121295
Descending dungeons: for definition see Comments lines.
Original entry on oeis.org
10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 110, 221, 444, 891, 1786, 3577, 7160, 14327, 28662, 57333, 171999, 515998, 1547996, 4643991, 13931977, 41795936, 125387814, 376163449, 1128490355, 3385471074, 13541884296, 54167537185, 216670148742, 866680594971
Offset: 10
a(13) = 13_(12_(11_10)) = 13_(12_11) = 13_13 = 16.
From _Jianing Song_, May 22 2021: (Start)
a(10) = 10;
a(11) = 11_10 = 11;
a(12) = 12_11 = 13;
a(13) = 13_13 = 16;
a(14) = 14_16 = 20;
a(15) = 15_20 = 25;
a(16) = 16_25 = 31;
... (End)
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- N. J. A. Sloane, Table of n, a(n) for n = 10..103
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- Brady Haran and N. J. A. Sloane, Dungeon Numbers, Numberphile video (2020). (extra)
-
asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b
s1:=[10]; for n from 11 to 50 do i:=n-10; s1:=[op(s1), asubb(n,s1[i])]; od: s1;
-
a(n) = {my(x=10); for (b=11, n, x = fromdigits(digits(b, 10), x);); x;} \\ Michel Marcus, May 26 2019
A121296
Descending dungeons: like A121295 but read subscripts from top downwards.
Original entry on oeis.org
10, 11, 13, 16, 20, 28, 45, 73, 133, 348, 4943, 22779, 537226, 11662285, 46524257772, 1092759075796059, 159271598072111595659, 3317896028408943302861454961, 594387514787460257685718548861374076357, 91930654519343922607883279072515432244874866615525276
Offset: 10
a(13) = ((13_12)_11)_10 = (15_11)_10 = 16_10 = 16.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- N. J. A. Sloane, Table of n, a(n) for n = 10..35
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
- Brady Haran and N. J. A. Sloane, Dungeon Numbers, Numberphile video (2020). (extra)
-
asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b
s2:=[10]; for n from 11 to 35 do t1:=n; for i from 1 to n-10 do t1:=asubb(t1,n-i); od: s2:=[op(s2),t1]; od;
A121264
See Comments for definition.
Original entry on oeis.org
2, 3, 5, 26, 1370, 9840770, 851566070376026
Offset: 1
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
A121863
See Comments lines for definition.
Original entry on oeis.org
16, 50, 304, 93032, 17310371214, 1498244757849709540196, 3363165974015385428987990761994364730059919325224645845292529932
Offset: 4
64_(32_16) = 64_(3*16 + 2) = 64_50 = 6*50 + 4 = 304.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
-
rebase(n,bas)={ local(resul,i) ; resul= n % 10 ; i=1 ; while(n>0, n = n \10 ; resul += (n%10)*bas^i ; i++ ; ) ; return(resul) ; } { a=16 ; print(a) ; for(n=5,12, a=2^n ; forstep(j=n,5,-1, a=rebase(2^(j-1),a) ; ) ; print1(a,",") ; ) ; } \\ R. J. Mathar, Sep 01 2006
A121864
See Comments lines for definition.
Original entry on oeis.org
16, 50, 406, 1258008, 25465014649108, 208080288305986199465852412572946560
Offset: 4
(64_32)_16 = (6*32 + 4)_16 = 196_16 = 1*256 + 9*16 + 6 = 406.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Cf.
A121863,
A121263,
A121266,
A121264,
A121265,
A121295,
A121296,
A111050,
A121866,
A122029,
A122030.
A122030
See Comments lines for definition.
Original entry on oeis.org
16, 38, 200, 2324, 1189028, 4996371438596, 54444310605180563002616118404, 1333929961635427338189657222796065386478968915403224556066936061387348857093217691444
Offset: 4
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Showing 1-10 of 13 results.
Comments