cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121304 Number of parts in all the compositions of n into primes (i.e., in all ordered sequences of primes having sum n).

Original entry on oeis.org

1, 1, 2, 5, 5, 14, 17, 32, 53, 76, 139, 198, 334, 515, 798, 1280, 1938, 3075, 4710, 7299, 11298, 17296, 26738, 40874, 62763, 96036, 146674, 224210, 341562, 520767, 792375, 1204951, 1831124, 2779234, 4217008, 6391663, 9683056, 14659038, 22177341
Offset: 2

Views

Author

Emeric Deutsch, Aug 06 2006

Keywords

Comments

a(n) = Sum_{k=1..floor(n/2)} k*A121303(n,k).

Examples

			a(8) = 17 because the compositions of 8 into primes are [3,5], [5,3], [2,3,3], [3,2,3], [3,3,2] and [2,2,2,2], having a total of 2+2+3+3+3+4 = 17 parts.
		

Crossrefs

Programs

  • Maple
    g:=sum(z^ithprime(i),i=1..53)/(1-sum(z^ithprime(i),i=1..53))^2: gser:=series(g,z=0,48): seq(coeff(gser,z,n),n=2..45);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          `if`(isprime(j), (p->p+[0, p[1]])(b(n-j)), 0), j=1..n))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=2..50);  # Alois P. Heinz, Nov 08 2013, revised Feb 12 2021
  • Mathematica
    nn=40;a[x_]:=Sum[x^Prime[n],{n,1,nn}];Drop[CoefficientList[Series[D[1/(1-y a[x]),y]/.y ->1,{x,0,nn}],x],2] (* Geoffrey Critzer, Nov 08 2013 *)
    Table[Length[Flatten[Union[Flatten[Permutations/@Select[ IntegerPartitions[ n], AllTrue[ #,PrimeQ]&],1]]]],{n,2,40}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 24 2016 *)
    b[n_] := b[n] = If[n == 0, {1, 0}, Sum[If[PrimeQ[j],
         Function[p, p+{0, p[[1]]}][b[n-j]], {0, 0}], {j, 1, n}]];
    a[n_] := b[n][[2]];
    a /@ Range[2, 50] (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)

Formula

G.f.: (Sum_{i>=1} z^prime(i))/(1 - Sum_{i>=1} z^prime(i))^2.