cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121303 Triangle read by rows: T(n,k) is the number of compositions of n into k primes (i.e., ordered sequences of k primes having sum n; n>=2, k>=1).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 2, 3, 0, 2, 3, 1, 0, 2, 4, 4, 0, 3, 6, 6, 1, 1, 0, 6, 8, 5, 0, 2, 9, 13, 10, 1, 1, 2, 6, 16, 15, 6, 0, 3, 6, 22, 25, 15, 1, 0, 2, 10, 24, 36, 26, 7, 0, 4, 9, 22, 50, 45, 21, 1, 1, 0, 12, 32, 65, 72, 42, 8, 0, 4, 12, 34, 70, 106, 77, 28, 1, 1, 2, 12, 40, 90, 150
Offset: 2

Views

Author

Emeric Deutsch, Aug 06 2006

Keywords

Comments

Row n has floor(n/2) terms.
Sum of terms in row n = A023360(n).
T(n,1) = A010051(n) (characteristic function of primes); T(n,2) = A073610(n); T(n,3) = A098238(n).
Sum_{k=1..floor(n/2)} k*T(n,k) = A121304(n).

Examples

			T(9,3) = 4 because we have [2,2,5], [2,5,2], [5,2,2] and [3,3,3].
Triangle starts:
  1;
  1;
  0, 1;
  1, 2;
  0, 1, 1;
  1, 2, 3;
  0, 2, 3, 1;
  0, 2, 4, 4;
  ...
		

Crossrefs

Programs

  • Maple
    G:=1/(1-t*sum(z^ithprime(i),i=1..30))-1: Gser:=simplify(series(G,z=0,25)): for n from 2 to 21 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 2 to 21 do seq(coeff(P[n],t,j),j=1..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    with(numtheory):
    b:= proc(n) option remember; local j; if n=0 then [1]
          else []; for j to pi(n) do zip((x, y)->x+y, %,
          [0, b(n-ithprime(j))[]], 0) od; % fi
        end:
    T:= n-> subsop(1=NULL, b(n))[]:
    seq(T(n), n=2..20);  # Alois P. Heinz, May 23 2013
  • Mathematica
    nn=20;a[x_]:=Sum[x^Prime[n],{n,1,nn}];CoefficientList[Series[1/(1-y a[x]),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Nov 08 2013 *)

Formula

G.f.: 1/(1 - t*Sum_{i>=1} z^prime(i)).

A281812 Expansion of Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2, where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 8, 19, 44, 99, 218, 473, 1012, 2144, 4504, 9395, 19482, 40189, 82534, 168829, 344145, 699334, 1417146, 2864510, 5776889, 11626101, 23353272, 46827677, 93747221, 187399328, 374092162, 745817021, 1485138398, 2954041789, 5869650947, 11651500427, 23107388495, 45787040997, 90652188078, 179340159228
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into squarefree parts (A005117).

Examples

			a(4) = 19 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
		

Crossrefs

Programs

  • Mathematica
    nmax = 36; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i, {i, 1, nmax}]/(1 - Sum[MoebiusMu[j]^2 x^j, {j, 1, nmax}])^2, {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2.

A281852 Expansion of Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2.

Original entry on oeis.org

0, 1, 1, 3, 5, 9, 18, 29, 55, 91, 163, 274, 472, 798, 1349, 2275, 3804, 6380, 10614, 17685, 29318, 48584, 80296, 132506, 218329, 359139, 590092, 968120, 1586707, 2597349, 4247619, 6939353, 11326636, 18471726, 30099313, 49008929, 79739345, 129650164, 210661777, 342080831, 555153086, 900432434, 1459670289
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 31 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into prime powers (1 excluded).

Examples

			a(7) = 18 because we have [7], [5, 2], [4, 3], [3, 4], [3, 2, 2], [2, 5], [2, 3, 2], [2, 2, 3] and 1 + 2 + 2 + 2 + 3 + 2 + 3 + 3 = 18.
		

Crossrefs

Programs

  • Mathematica
    nmax = 43; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}]/(1 - Sum[Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}])^2, {x, 0, nmax}], x]]

Formula

G.f.: Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2.

A281853 Expansion of Sum_{k>=2} x^prime(k) / (1 - Sum_{k>=2} x^prime(k))^2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 4, 3, 6, 10, 8, 19, 22, 26, 48, 53, 78, 112, 136, 205, 264, 354, 504, 639, 890, 1204, 1568, 2173, 2868, 3826, 5192, 6839, 9214, 12295, 16296, 21894, 28996, 38624, 51552, 68230, 90930, 120715, 159988, 212728, 281696, 373574, 495312, 655365, 868510, 1149161, 1520020, 2011591, 2658416, 3514446
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 31 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into odd primes (A065091).

Examples

			a(11) = 10 because we have [11], [5, 3, 3], [3, 5, 3], [3, 3, 5] and 1 + 3 + 3 + 3 = 10.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[Sum[x^Prime[k], {k, 2, nmax}]/(1 - Sum[x^Prime[k], {k, 2, nmax}])^2, {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=2} x^prime(k) / (1 - Sum_{k>=2} x^prime(k))^2.
Showing 1-4 of 4 results.