A121337 Number of idempotent relations on n labeled elements.
1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0
Examples
a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013 These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
References
- F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
- Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.
Links
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- K. K.-H. Butler and G. Markowsky, The Number of Maximal Subgroups of the Semigroup of Binary Relations, Kyungpook Math. J. Vol 12, June 1972.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- F. Kammüller, Counting idempotent relations.
- F. Kammüller and J. W. Sanders, Idempotent relations in Isabelle/HOL, International Colloquium on Theoretical Aspects of Computing, ICTAC'04. Volume 3407 of Lecture Notes in Computer Science, Springer-Verlag (2005).
- G. Pfeiffer, Counting transitive relations, J. Integer Sequences, Volume 7, 2004, #3.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
Crossrefs
Programs
-
Mathematica
Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)
Extensions
Offset corrected by James Mitchell, Jul 28 2013
a(1) corrected by Philippe Beaudoin, Aug 11 2015
Comments