cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121352 Number of different, not necessarily connected, unlabeled trivalent diagrams of size n.

Original entry on oeis.org

1, 1, 2, 4, 7, 10, 24, 37, 63, 112, 200, 318, 607, 1058, 1814, 3247, 6004, 10316, 19048, 35478, 63496, 117023, 223822, 408121, 766661, 1484363, 2775201, 5270079, 10357605, 19714259, 37970066, 75439670, 146103241, 284719527, 571706625, 1123396477, 2214903209
Offset: 0

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of isomorphism class of PSL_2(ZZ) actions on finite sets of size n.
Also the number of (r,s) pair of permutations up to simultaneous conjugation, in S_n for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Not necessarily connected version of A121350.
Unlabeled version of A121357.
Cf. also A005133, A121355, A121356.

Programs

  • Maple
    mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) : v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) : N := 100 : ZF := 1 : for k from N to 1 by -1 do ZF := rem(ZF * add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor(N/ k)),t^(N+1),t) ; end do : sort(ZF,t, ascending);
  • Mathematica
    max = 34; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; ZF = 1; For[k = max, k >= 1, k--, ZF = PolynomialMod[ ZF*Sum[ n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}], t^(max + 1)]]; CoefficientList[ZF, t](* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={Vec(prod(k=1, n, my(A=O(x^(n\k+1)), p=serconvol(exp(A + D(1,k) + D(3,k)), exp(A + D(1,k) + D(2,k)))); sum(r=0, n\k, r!*polcoef(p,r)/(k^r)*x^(k*r), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A121350. - Andrew Howroyd, Jan 29 2025

Extensions

a(35) onwards from Andrew Howroyd, Jan 29 2025