A098568 Triangle of triangular binomial coefficients, read by rows, where column k has the g.f.: 1/(1-x)^((k+1)*(k+2)/2) for k >= 0.
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 56, 55, 15, 1, 1, 21, 126, 220, 120, 21, 1, 1, 28, 252, 715, 680, 231, 28, 1, 1, 36, 462, 2002, 3060, 1771, 406, 36, 1, 1, 45, 792, 5005, 11628, 10626, 4060, 666, 45, 1, 1, 55, 1287, 11440, 38760, 53130, 31465, 8436
Offset: 0
Examples
G.f.s of columns: 1/(1-x), 1/(1-x)^3, 1/(1-x)^6, 1/(1-x)^10, 1/(1-x)^15, ... Rows begin: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 21, 10, 1; 1, 15, 56, 55, 15, 1; 1, 21, 126, 220, 120, 21, 1; 1, 28, 252, 715, 680, 231, 28, 1; 1, 36, 462, 2002, 3060, 1771, 406, 36, 1; 1, 45, 792, 5005, 11628, 10626, 4060, 666, 45, 1; 1, 55, 1287, 11440, 38760, 53130, 31465, 8436, 1035, 55, 1; 1, 66, 2002, 24310, 116280, 230230, 201376, 82251, 16215, 1540, 66, 1; ... From _Frank Ruskey_, Apr 15 2011: (Start) In reference to comment about s(1)s(2)...s(n) above, a(4,2) = 6 = |{0012, 0013, 0023, 0101, 0103, 0120}| and a(4,3) = 6 = |{0001, 0002, 0003, 0010, 0020, 0100}|. (End) From _Geoffrey Critzer_, Nov 12 2011: (Start) In reference to comment about multigraphs above, 1, 1, 1, 1, 1, 1, ... 2 nodes 1, 3, 6, 10, 15, 21, ... 3 nodes 1, 6, 21, 56, 126, 252, ... . 1, 10, 55, 220, 715, 2002, ... . 1, 15, 120, 680, 3060, 11628, ... . 1, 21, 231, 1771, 10626, 58130, ... . (End)
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1080, of flattened triangle, read by rows 0..45.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- Zhicong Lin and Shishuo Fu, On 120-avoiding inversion and ascent sequences, arXiv:2003.11813 [math.CO], 2020.
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], (2017), table 60.
Crossrefs
Programs
-
Mathematica
t[n_, k_] = Binomial[(k+1)*(k+2)/2 + n-k-1, n-k]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Jul 18 2011 *)
-
PARI
{T(n,k)=binomial((k+1)*(k+2)/2+n-k-1,n-k)} for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
T(n, k) = binomial((k+1)*(k+2)/2 + n-k-1, n-k).
Comments