cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287335 Nonnegative numbers k such that 3*k + 2 is a cube.

Original entry on oeis.org

2, 41, 170, 443, 914, 1637, 2666, 4055, 5858, 8129, 10922, 14291, 18290, 22973, 28394, 34607, 41666, 49625, 58538, 68459, 79442, 91541, 104810, 119303, 135074, 152177, 170666, 190595, 212018, 234989, 259562, 285791, 313730, 343433, 374954, 408347, 443666, 480965
Offset: 1

Views

Author

Bruno Berselli, May 23 2017

Keywords

Comments

Corresponding cubes are listed in A016791.
Primes in the sequence: 2, 41, 443, 1637, 22973, 34607, 91541, 234989, ...

Crossrefs

Subsequence of A047292.
Cf. A244728: nonnegative k such that 3*k is a cube.
Cf. A121628: nonnegative k such that 3*k + 1 is a cube.

Programs

  • Magma
    [9*n^3-9*n^2+3*n-1: n in [1..40]];
  • Mathematica
    Table[9 n^3 - 9 n^2 + 3 n - 1, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{2,41,170,443},40] (* Harvey P. Dale, Aug 28 2021 *)
  • Maxima
    makelist(9*n^3-9*n^2+3*n-1, n, 1, 40);
    
  • Python
    [9*n**3-9*n**2+3*n-1 for n in range(1,40)]
    
  • Sage
    [9*n^3-9*n^2+3*n-1 for n in (1..40)]
    

Formula

O.g.f.: x*(2 + 33*x + 18*x^2 + x^3)/(1 - x)^4.
E.g.f.: 1 - (1 - 3*x - 18*x^2 - 9*x^3)*exp(x).
a(n) = 9*n^3 - 9*n^2 + 3*n - 1.
a(n) = A131476(3*n-1) = A212069(3*n-1).

A268861 Cubefree numbers n such that n + 1 is a perfect cube.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 1330, 1727, 2196, 2743, 3374, 4095, 7999, 9260, 10647, 12166, 13823, 17575, 19682, 24388, 26999, 29790, 32767, 39303, 42874, 46655, 54871, 59318, 63999, 74087, 79506, 85183, 91124, 103822, 110591, 124999, 132650, 140607, 148876
Offset: 1

Views

Author

K. D. Bajpai, Feb 14 2016

Keywords

Comments

Intersection of A004709 and A068601. - Michel Marcus, Feb 15 2016

Examples

			a(2) = 26 = 2 * 13 that is cubefree. 26 + 1 = 27 = 3^3 (perfect cube).
a(4) = 124 = 2 * 2 * 31 that is cubefree. 124 + 1 = 125 = 5^3 (perfect cube).
		

Crossrefs

Programs

  • Maple
    cubefree:= proc(n) local t;
      max(seq(t[2],t=ifactors(n)[2])) <= 2
    end proc:
    select(cubefree, [seq(i^3-1,i=2..100)]); # Robert Israel, Mar 03 2016
  • Mathematica
    Select[Range[150000], FreeQ[FactorInteger[#], {, k /; k > 2}] && IntegerQ[CubeRoot[# + 1]] &]
    Select[Range[2,70]^3,Max[FactorInteger[#-1][[All,2]]]<3&]-1 (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    for(n=1, 1e5, f = factor(n)[, 2]; if((#f == 0) || vecmax(f) < 3, if(ispower(n + 1, 3), print1(n, ", "))));
Showing 1-2 of 2 results.