cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344191 a(n) = Catalan(n) * (n^2 + 2) / (n + 2).

Original entry on oeis.org

1, 1, 3, 11, 42, 162, 627, 2431, 9438, 36686, 142766, 556206, 2169268, 8469060, 33096195, 129454695, 506793270, 1985612310, 7785510810, 30548406570, 119944382220, 471241577820, 1852521913710, 7286586193926, 28675561428972, 112905199767052, 444752335104252
Offset: 0

Views

Author

F. Chapoton, May 11 2021

Keywords

Comments

Conjecture: These are the number of linear intervals in Pallo's comb posets. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 36686 for n = 9.

Examples

			All 3 intervals in the poset of cardinality 2 are linear. All 11 intervals in the poset of cardinality 5 are linear.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n = 0, 1, a(n-1)*(2*(2*n-1)*(n^2+2))/((n+2)*(n^2-2*n+3))):
    seq(a(n), n = 0..19); # Peter Luschny, May 11 2021
  • Mathematica
    a[n_] := CatalanNumber[n] (n^2 + 2) / (n + 2);
    Table[a[n], { n, 0, 23}] (* Peter Luschny, May 11 2021 *)
  • PARI
    a(n) = (binomial(2*n,n)/(n+1))*((n^2 + 2)/(n + 2)); \\ Michel Marcus, May 11 2021
  • Sage
    def a(n):
        return catalan_number(n)+sum(2**(n-k)/factorial(k-2)*(n-k+4)/(n+2)*prod(n+i for i in range(2, k)) for k in range(2, n+1))
    
  • Sage
    def a(n): return catalan_number(n) + binomial(2*n, n-2)
    print([a(n) for n in range(24)]) # Peter Luschny, May 11 2021
    

Formula

a(n) = Catalan(n) + (1/(n + 2))*Sum_{k=2..n}((2^(n - k)*(n - k + 4)/(k - 2)!)* Product_{i=2..k-1}(n + i)).
From Peter Luschny, May 11 2021: (Start)
a(n) = [x^n] ((2*x + sqrt(1 - 4*x) - 1)*(3*x - 1))/(2*sqrt(1 - 4*x)*x^2).
a(n) = n! * [x^n] exp(2*x)*(BesselI(0, 2*x) - BesselI(1, 2*x) + BesselI(2, 2*x)).
a(n) = a(n-1)*(2*(2*n - 1)*(n^2 + 2))/((n + 2)*(n^2 - 2*n + 3)) for n >= 1.
a(n) = Catalan(n) + binomial(2*n, n-2) = A000108(n) + A002694(n).
a(n) ~ (2^(2*n - 3)*(8*n - 25)) / (sqrt(Pi)*n^(3/2)). (End)
a(n) = A121686(n) / 2. - Hugo Pfoertner, May 11 2021

A121685 Triangle read by rows: T(n,k) is the number of binary trees having n edges and k branches (1<=k<=n). A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

2, 4, 1, 8, 4, 2, 16, 12, 12, 2, 32, 32, 48, 16, 4, 64, 80, 160, 80, 40, 5, 128, 192, 480, 320, 240, 60, 10, 256, 448, 1344, 1120, 1120, 420, 140, 14, 512, 1024, 3584, 3584, 4480, 2240, 1120, 224, 28, 1024, 2304, 9216, 10752, 16128, 10080, 6720, 2016, 504, 42
Offset: 1

Views

Author

Emeric Deutsch, Aug 15 2006

Keywords

Comments

The row sums are the Catalan numbers (A000108). T(n,1)=2^n = A000079(n). T(n,n)=A089408(n+1). Sum(k*T(n,k),k=1..n)=A121686(n).

Examples

			Triangle starts:
2;
4,1;
8,4,2;
16,12,12,2;
32,32,48,16,4;
		

Crossrefs

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1): T:=proc(n,k) if k mod 2 = 0 then c(k/2)*binomial(n-1,k-1)*2^(n-k) else c((k-1)/2)*binomial(n-1,k-1)*2^(n-k+1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form

Formula

T(n,k)=2^(n-k)*c(k/2)*binomial(n-1,k-1) if k is even and 2^(n-k+1)*c((k-1)/2)*binomial(n-1,k-1) if k is odd, where c(m)=binomial(2m,m)/(m+1) are the Catalan numbers (A000108). G.f.=(1-2z+2tz)(1-2z-sqrt[(1-2z)^2-4t^2*z^2])/(2t^2*z^2) - 1.
Showing 1-2 of 2 results.