cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A121690 G.f.: A(x) = Sum_{k>=0} x^k * (1+x)^(k*(k+1)/2).

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 81, 262, 910, 3363, 13150, 54135, 233671, 1053911, 4951997, 24177536, 122381035, 640937746, 3466900453, 19337255086, 111057640382, 655892813805, 3978591077096, 24760700544301, 157941950878839
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2006

Keywords

Comments

a(n) is the number of length n permutations that simultaneously avoid the bivincular patterns (123,{2},{}) and (132,{},{2}). - Christian Bean, Jun 03 2015

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k*(k+1)/2,n-k],{k,0,n}],{n,0,30}] (* Vaclav Kotesovec, Jun 03 2015 *)
  • PARI
    a(n) = sum(k=0,n, binomial(k*(k+1)/2, n-k))
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, (1 - x*(1+x)^(2*k-2))/(1 - x*(1+x)^(2*k-1) + x*O(x^n)))), n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 21 2018

Formula

a(n) = Sum_{k=0..n} C(k*(k+1)/2,n-k).
a(n) = A131338(n+1, n*(n+1)/2 + 1) for n>=0, where triangle A131338 starts with a '1' in row 0 and then for n>0 row n consists of n '1's followed by the partial sums of the prior row. - Paul D. Hanna, Aug 30 2007
From Paul D. Hanna, Apr 24 2010: (Start)
Let q = (1+x), then g.f. A(x) equals the continued fraction:
A(x) = 1/(1 - q*x/(1 - (q^2-q)*x/(1 - q^3*x/(1 - (q^4-q^2)*x/(1 - q^5*x/(1- (q^6-q^3)*x/(1 - q^7*x/(1 - (q^8-q^4)*x/(1 - ...)))))))))
due to an identity of a partial elliptic theta function.
(End)
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 - x*(1+x)^(2*k-2))/(1 - x*(1+x)^(2*k-1)). - Paul D. Hanna, Mar 21 2018
log(a(n)) ~ n*log(n) - 2*n*log(log(n)) - n*(1 - log(2)) + 4*n*log(log(n))/log(n) - 2*n*log(2)/log(n). - Vaclav Kotesovec, Jul 01 2025

A325580 G.f.: A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n, where A(0) = 0, as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 16, 24, 15, 4, 1, 57, 98, 67, 26, 5, 1, 231, 430, 336, 144, 40, 6, 1, 1023, 2062, 1767, 861, 265, 57, 7, 1, 4926, 10610, 9873, 5300, 1845, 440, 77, 8, 1, 25483, 58240, 58221, 33974, 13041, 3501, 679, 100, 9, 1, 140601, 338984, 360930, 226716, 94580, 27978, 6083, 992, 126, 10, 1, 822422, 2081189, 2345469, 1572134, 706225, 226843, 54271, 9886, 1389, 155, 11, 1, 5074015, 13423258, 15926115, 11318196, 5428820, 1876728, 486941, 97448, 15246, 1880, 187, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, May 11 2019

Keywords

Examples

			G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k begins:
A(x,y) = 1 + (y + 1)*x + (y^2 + 2*y + 2)*x^2 + (y^3 + 3*y^2 + 7*y + 5)*x^3 + (y^4 + 4*y^3 + 15*y^2 + 24*y + 16)*x^4 + (y^5 + 5*y^4 + 26*y^3 + 67*y^2 + 98*y + 57)*x^5 + (y^6 + 6*y^5 + 40*y^4 + 144*y^3 + 336*y^2 + 430*y + 231)*x^6 + (y^7 + 7*y^6 + 57*y^5 + 265*y^4 + 861*y^3 + 1767*y^2 + 2062*y + 1023)*x^7 + (y^8 + 8*y^7 + 77*y^6 + 440*y^5 + 1845*y^4 + 5300*y^3 + 9873*y^2 + 10610*y + 4926)*x^8 + (y^9 + 9*y^8 + 100*y^7 + 679*y^6 + 3501*y^5 + 13041*y^4 + 33974*y^3 + 58221*y^2 + 58240*y + 25483)*x^9 + (y^10 + 10*y^9 + 126*y^8 + 992*y^7 + 6083*y^6 + 27978*y^5 + 94580*y^4 + 226716*y^3 + 360930*y^2 + 338984*y + 140601)*x^10 + ...
where, by definition,
A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
1;
1, 1;
2, 2, 1;
5, 7, 3, 1;
16, 24, 15, 4, 1;
57, 98, 67, 26, 5, 1;
231, 430, 336, 144, 40, 6, 1;
1023, 2062, 1767, 861, 265, 57, 7, 1;
4926, 10610, 9873, 5300, 1845, 440, 77, 8, 1;
25483, 58240, 58221, 33974, 13041, 3501, 679, 100, 9, 1;
140601, 338984, 360930, 226716, 94580, 27978, 6083, 992, 126, 10, 1;
822422, 2081189, 2345469, 1572134, 706225, 226843, 54271, 9886, 1389, 155, 11, 1;
5074015, 13423258, 15926115, 11318196, 5428820, 1876728, 486941, 97448, 15246, 1880, 187, 12, 1; ...
the leftmost column in which yields A121689:
[1, 1, 2, 5, 16, 57, 231, 1023, 4926, 25483, 140601, ..., A121689, ...]
and has g.f.: Sum_{n>=0} x^n * (1+x)^(n^2).
Column 1 equals
[1, 2, 7, 24, 98, 430, 2062, 10610, 58240, 338984, ..., A325581(n), ...]
and has g.f.: Sum_{n>=0} (n+1) * x^n * (1+x)^(n*(n+1)).
Column 2 equals
[1, 3, 15, 67, 336, 1767, 9873, 58221, 360930, ..., A325586(n), ...]
and has g.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1+x)^(n*(n+2)).
The row sums of this triangle begin
[1, 2, 5, 16, 60, 254, 1188, 6043, 33080, 193249, ..., A301306(n), ...]
and has g.f.: Sum_{n>=0} (1 + (1+x)^n)^n * x^n.
		

Crossrefs

Cf. A121689 (column 0), A301306 (row sums), A325581 (column 1), A325586 (column 2), A325587 (column 3).

Programs

  • PARI
    {T(n,k) = my(Axy = sum(m=0,n, x^m * ((1+x +x*O(x^n))^m + y)^m ) );
    polcoeff( polcoeff( Axy,n,x),k,y)}
    for(n=0,12,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k equals the following.
(1) A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n.
(2) A(x,y) = Sum_{n>=0} x^n * (1+x)^(n^2) / (1 - x*y*(1+x)^n)^(n+1).
(3) A(x,y) = Sum_{k>=0} y^k * Sum_{n>=0} binomial(n+k,n) * (x*(1+x)^n)^(n+k).
G.f. of column k: Sum_{n>=0} binomial(n+k,n) * x^n * (1+x)^(n*(n+k)).

A325289 G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) = Sum_{n>=0} x^n*(1+x)^(n^2).

Original entry on oeis.org

1, 1, 1, 3, 9, 41, 200, 1096, 6440, 40095, 262298, 1790395, 12699751, 93311273, 708519038, 5549751855, 44780255681, 371785828813, 3173019719939, 27813799706468, 250222091088035, 2308676057468240, 21831456961064288, 211449264040904335, 2096345122112307560, 21261235260097878478, 220457711039776064974, 2335722548273384751833
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 9*x^4 + 41*x^5 + 200*x^6 + 1096*x^7 + 6440*x^8 + 40095*x^9 + 262298*x^10 + 1790395*x^11 + 12699751*x^12 + ...
such that the following series are equal:
B(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^6 + x^4*A(x)^10 + x^5*A(x)^15 + x^6*A(x)^21 + x^7*A(x)^28 + x^8*A(x)^36 + ...
B(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + x^8*(1+x)^64 + ...
where
B(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + ... + A121689(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = -polcoeff( sum(m=0,#A, x^m*( Ser(A)^(m*(m+1)/2) - (1+x +x*O(x^#A))^(m^2)) ),#A) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

A217285 Irregular triangle read by rows: T(n,k) is the number of labeled relations on n nodes with exactly k edges; n>=0, 0<=k<=n^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 1, 25, 300, 2300, 12650, 53130, 177100, 480700, 1081575, 2042975, 3268760, 4457400, 5200300, 5200300, 4457400, 3268760, 2042975, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1
Offset: 0

Views

Author

Geoffrey Critzer, Sep 30 2012

Keywords

Comments

A labeled relation on 6 nodes will be connected with probability > 99%. It will have at least 10 and no more than 26 edges with probability > 99%.
A random labeled relation can be generated in Mathematica:
GraphPlot[g=Table[RandomInteger[],{6},{6}], DirectedEdges->True, VertexLabeling->True, SelfLoopStyle->True, MultiedgeStyle->True]
Sum {k=0...n^2} T(n,k)*k = A185968. - Geoffrey Critzer, Oct 07 2012

Examples

			G.f.: A(x,y) = 1 + x*(1+y) + x^2*(1+y)^4 + x^3*(1+y)^9 + x^4*(1+y)^16 +...
Triangle T(n,k) begins:
1;
1,  1;
1,  4,  6,    4,    1;
1,  9,  36,  84,  126,  126,   84,    36,     9,     1;
1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, ...
		

Crossrefs

Column k=1 gives: A000290.
Row lengths are: A002522.
Antidiagonal sums: A121689.

Programs

  • Mathematica
    Table[Table[Binomial[n^2,k], {k,0,n^2}], {n,0,6}] //Grid
  • PARI
    {T(n,k)=polcoeff((1+x+x*O(x^k))^(n^2),k)}
    for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Aug 22 2013
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1) +x*O(x^n)))), n,x),k,y)}
    {for(n=0,6,for(k=0,n^2,print1(T(n,k),", "));print(""))} \\ Paul D. Hanna, Aug 22 2013

Formula

T(n,k) = binomial(n^2,k).
E.g.f.: Sum{n>=0}(1+y)^(n^2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
G.f.: A(x,y) = Sum_{n>=0} x^n*(1+y)^n*Product_{k=1..n} (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1)) due to a q-series identity. - Paul D. Hanna, Aug 22 2013
G.f.: A(x,y) = 1/(1- q*x/(1- (q^3-q)*x/(1- q^5*x/(1- (q^7-q^3)*x/(1- q^9*x/(1- (q^11-q^5)*x/(1- q^13*x/(1- (q^15-q^7)*x/(1- ...))))))))), a continued fraction where q = (1+y), due to an identity of a partial elliptic theta function. - Paul D. Hanna, Aug 22 2013

A325581 G.f.: Sum_{n>=0} (n+1) * x^n * (1+x)^(n*(n+1)).

Original entry on oeis.org

1, 2, 7, 24, 98, 430, 2062, 10610, 58240, 338984, 2081189, 13423258, 90626012, 638509008, 4682120763, 35650040782, 281266115870, 2295142774336, 19338107378888, 167987656339604, 1502475101768767, 13818574571596432, 130542011977462175, 1265358001625542030, 12572822521590475349, 127943980062492526520, 1332336499429857507073, 14186629118985647254622, 154348478009342665050329, 1714707987491310848285920
Offset: 0

Views

Author

Paul D. Hanna, May 11 2019

Keywords

Comments

Equals column 1 of triangle A325580.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 24*x^3 + 98*x^4 + 430*x^5 + 2062*x^6 + 10610*x^7 + 58240*x^8 + 338984*x^9 + 2081189*x^10 + 13423258*x^11 + 90626012*x^12 + ...
such that
A(x) = 1 + 2*x*(1+x)^2 + 3*x^2*(1+x)^6 + 4*x^3*(1+x)^12 + 5*x^4*(1+x)^20 + 6*x^5*(1+x)^30 + 7*x^6*(1+x)^42 + 8*x^7*(1+x)^(56) + 9*x^8*(1+x)^72 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1) * x^m * (1+x +x*O(x^n))^(m*(m+1)) )); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

A325586 G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1+x)^(n*(n+2)).

Original entry on oeis.org

1, 3, 15, 67, 336, 1767, 9873, 58221, 360930, 2345469, 15926115, 112702725, 829218143, 6329731749, 50032666719, 408810685879, 3447546750090, 29963861568735, 268051909321565, 2465213070499965, 23282355990573738, 225577403162464915, 2240023319131286013, 22778185448591006709, 236997065442660095669, 2521130509681288754841, 27401150807636634911205, 304071227823781106763523, 3443058535424619400592874
Offset: 0

Views

Author

Paul D. Hanna, May 11 2019

Keywords

Comments

Equals column 2 of triangle A325580.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 67*x^3 + 336*x^4 + 1767*x^5 + 9873*x^6 + 58221*x^7 + 360930*x^8 + 2345469*x^9 + 15926115*x^10 + 112702725*x^11 + ...
such that
A(x) = 1 + 3*x*(1+x)^3 + 6*x^2*(1+x)^8 + 10*x^3*(1+x)^15 + 15*x^4*(1+x)^24 + 21*x^5*(1+x)^35 + 28*x^6*(1+x)^48 + 36*x^7*(1+x)^63 + 45*x^8*(1+x)^80 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, (m+1)*(m+2)/2 * x^m * (1+x +x*O(x^n))^(m*(m+2)) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A320950 G.f.: [ Sum_{n>=0} x^n * (1+x)^(n^2) ] * [ Sum_{n>=0} x^n / (1+x)^(n^2) ].

Original entry on oeis.org

1, 2, 3, 5, 20, 81, 272, 1144, 6147, 30859, 158137, 955988, 5995439, 37307475, 252176301, 1813873656, 13149151909, 99412177075, 793516947530, 6470733413532, 54217400538306, 473499984230701, 4245890615280401, 38948094201082823, 368815668052736968, 3585473523132486254, 35608100771085923165, 362850695679003347638, 3788143752503214124895
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 20*x^4 + 81*x^5 + 272*x^6 + 1144*x^7 + 6147*x^8 + 30859*x^9 + 158137*x^10 + 955988*x^11 + 5995439*x^12 + ...
such that A(x) = P(x) * Q(x) where
P(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n * (1+x)^(n^2) + ...
Q(x) = 1 + x/(1+x) + x^2/(1+x)^4 + x^3/(1+x)^9 + x^4/(1+x)^16 + x^5/(1+x)^25 + x^6/(1+x)^36 + x^7/(1+x)^49 + ... + x^n / (1+x)^(n^2) + ...
Explicitly,
P(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + 822422*x^11 + ... + A121689(n)*x^n + ...
Q(x) = 1 + x - 2*x^3 + x^4 + 11*x^5 - 19*x^6 - 86*x^7 + 365*x^8 + 581*x^9 - 7336*x^10 + 6061*x^11 + 142946*x^12 - 556061*x^13 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, x^m*(1+x + x*O(x^n))^(m^2) ) * sum(m=0, n, x^m/(1+x + x*O(x^n))^(m^2) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A337850 G.f. A(x) satisfies: Sum_{n>=0} x^(n^2) * A(x)^n = Sum_{n>=0} x^n * (1+x)^(n^2).

Original entry on oeis.org

1, 2, 5, 15, 53, 217, 973, 4735, 24686, 137026, 805273, 4986541, 32409056, 220327688, 1562196894, 11522725486, 88215618320, 699573288808, 5736354452771, 48556636776122, 423674461139747, 3805446588538974, 35142868684678717, 333303148345306269, 3243121812554272131
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2020

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 15*x^3 + 53*x^4 + 217*x^5 + 973*x^6 + 4735*x^7 + 24686*x^8 + 137026*x^9 + 805273*x^10 + ...
such that the following series are equal
B(x) = 1 + x*A(x) + x^4*A(x)^2 + x^9*A(x)^3 + x^16*A(x)^4 + x^25*A(x)^5 + x^36*A(x)^6 + x^49*A(x)^7 + ... + x^(n^2)*A(x)^n + ...
B(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n*(1+x)^(n^2) + ...
where
B(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + ... + A121689(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -polcoeff( sum(m=0, #A, x^(m^2)*Ser(A)^m - x^m*(1+x +x*O(x^#A) )^(m^2) ), #A) ); A[n+1]}
    for(n=0, 35, print1(a(n), ", "))

A183608 G.f.: A(x) = Sum_{n>=0} x^n * C(x)^(n^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 2, 7, 29, 133, 658, 3471, 19400, 114417, 709815, 4619048, 31446579, 223419752, 1652599036, 12698380493, 101151995810, 833740791381, 7098646227614, 62335051895044, 563749889969108, 5244173616702347, 50117689766439784
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 133*x^5 + 658*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[(n-k)^2+2*k, k] * (n-k)^2/((n-k)^2 + 2*k),{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=if(n<0,0,0^n+sum(k=0, n-1, binomial((n-k)^2+2*k, k)*(n-k)^2/((n-k)^2+2*k)))}

Formula

a(n) = Sum_{k=0..n-1} binomial((n-k)^2+2k, k) * (n-k)^2/((n-k)^2 + 2k) for n>0 with a(0)=1.
G.f.: A(x) = Sum_{n>=0} x^n*C(x)^n*Product_{k=1..n} (1-x*C(x)^(4*k-3))/(1-x*C(x)^(4*k-1)) where C(x) = 1 + x*C(x)^2.
Let q = C(x) = 1 + x*C(x)^2, then g.f. A(x) equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
G.f.: A(x) = 1 + x*C(x)* G( x*C(x)^2 ), where G(x) = Sum_{k>=0} x^k*(1+x)^(k^2) is the g.f. of A121689.
Showing 1-9 of 9 results.