cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121907 Expansion of g.f.: (1 + x + x^2)/(1 - 2*x - 2*x^2).

Original entry on oeis.org

1, 3, 9, 24, 66, 180, 492, 1344, 3672, 10032, 27408, 74880, 204576, 558912, 1526976, 4171776, 11397504, 31138560, 85072128, 232421376, 634987008, 1734816768, 4739607552, 12948848640, 35376912384, 96651522048, 264056868864, 721416781824, 1970947301376
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2006

Keywords

Comments

a(n-1) is the number of compositions of n into floor((3*j-1)/2) kinds of j's for all j >= 1. The sequence of such compositions is 1,1,3,9,24,... (i.e., this sequence prepended by 1) and has g.f. 1/(1-Sum_{j>=1} floor((3*j-1)/2)*x^j). - Joerg Arndt, Jul 06 2011
a(n) is the number of length n words on 3 letters (ternary words) such that the length of any run of identical letters is <= 2. Cf. A181137 for a generalization. - Geoffrey Critzer, Sep 16 2013

References

  • A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.

Crossrefs

Column 3 in A265584.

Programs

  • GAP
    a:=[3,9];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # G. C. Greubel, Oct 07 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x+x^2)/(1-2*x-2*x^2) )); // G. C. Greubel, Oct 07 2019
    
  • Maple
    seq(coeff(series((1+x+x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 07 2019
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-2x-2x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,2},{1,3,9},30] (* Harvey P. Dale, Dec 03 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x+x^2)/(1-2*x-2*x^2)) \\ G. C. Greubel, Oct 07 2019
    
  • Sage
    def A121907_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x+x^2)/(1-2*x-2*x^2)).list()
    A121907_list(30) # G. C. Greubel, Oct 07 2019
    

Formula

a(0)=1, a(1)=3, a(2)=9; a(n) = 2*a(n-1) + 2*a(n-2) for n>=3. - Philippe Deléham, Sep 19 2009
G.f.: (1/x)*(-1 + 1/(1-Sum_{j>=1} floor((3*j-1)/2)*x^j)). - Joerg Arndt, Jul 06 2011
E.g.f.: (1/2)*exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1/2. - Stefano Spezia, Oct 08 2019