A122022 a(n) = a(n-1) - (n-1)*a(n-4), with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 1.
0, 1, 2, 1, 1, -3, -13, -19, -26, -2, 115, 305, 591, 615, -880, -5150, -14015, -23855, -8895, 83805, 350090, 827190, 1013985, -829725, -8881795, -28734355, -54083980, -32511130, 207297335, 1011859275, 2580294695, 3555628595, -2870588790, -35250085590
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..999 [Offset adapted by _Georg Fischer_, Jun 06 2021]
Programs
-
GAP
a:= function(n) if n<3 then return n; elif n=3 then return 1; else return a(n-1) - (n-1)*a(n-4); fi; end; List([1..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
-
Magma
I:=[0,1,2,1]; [n le 4 select I[n] else Self(n-1) - (n-2)*Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 06 2019
-
Maple
a:= proc(n) option remember; if n<3 then n elif n=3 then 1 else a(n-1) - (n-1)*a(n-4) fi; end: seq(a(n), n=0..30); # G. C. Greubel, Oct 06 2019
-
Mathematica
a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= a[n-1] - (n-1)*a[n-4]; Table[a[n], {n, 0, 30}] RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==1,a[n]==a[n-1]- (n-1) a[n-4]},a,{n,0,30}] (* Harvey P. Dale, Nov 28 2014 *)
-
PARI
my(m=30, v=concat([0,1,2,1], vector(m-4))); for(n=5, m, v[n] = v[n-1] - (n-2)*v[n-4]); v \\ G. C. Greubel, Oct 06 2019
-
Sage
@CachedFunction def a(n): if (n<3): return n elif (n==3): return 1 else: return a(n-1) - (n-1)*a(n-4) [a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
Extensions
Edited by N. J. A. Sloane, Sep 12 2006
Offset corrected by Georg Fischer, Jun 06 2021