cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122057 a(n) = (n+1)! * (H(n+1) - H(2)), where H(n) are the harmonic numbers.

Original entry on oeis.org

0, 2, 14, 94, 684, 5508, 49104, 482256, 5185440, 60668640, 767940480, 10462227840, 152698210560, 2377651449600, 39350097561600, 689874448435200, 12773427499929600, 249097496204390400, 5103595024496640000, 109608397522606080000, 2462475687669043200000
Offset: 1

Views

Author

Roger L. Bagula, Sep 14 2006

Keywords

Comments

Former title (corrected): A Legendre-based recurrence sequence. Let b(n) = ((4*n+2)*x -(2*n+1) )/(n+1)*b(n-1) - (n/(n+1))*b(n-2), where x=1, then a(n) = (n+1)!*b(n)/6. - G. C. Greubel, Oct 03 2019

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964, 9th Printing (1970), pp. 782

Crossrefs

Programs

  • GAP
    List([1..30], n-> Factorial(n+1)*(Sum([1..n+1], k-> 1/k) - 3/2) ); # G. C. Greubel, Oct 03 2019
  • Magma
    [Factorial(n+1)*(HarmonicNumber(n+1) - 3/2): n in [1..30]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    a:=n-> (n+1)!*add(1/k,k=3..n+1): seq(a(n),n=1..30); # Gary Detlefs, Jul 15 2010
  • Mathematica
    x=1; b[1]:=0; b[2]:=2; b[n_]:= b[n]= ((-2*n-1) +(4*n+2)*x)/(n+1)*b[n-1] - (n/(n+1))*b[n-2]; Table[b[n]*(n+1)!/6, {n,30}]
    Table[(n+1)!*(HarmonicNumber[n+1] - 3/2), {n,30}] (* G. C. Greubel, Oct 03 2019 *)
  • PARI
    vector(30, n, (n+1)!*(sum(k=1,n+1, 1/k) - 3/2) ) \\ G. C. Greubel, Oct 03 2019
    
  • Sage
    [factorial(n+1)*(harmonic_number(n+1) - 3/2) for n in (1..30)] # G. C. Greubel, Oct 03 2019
    

Formula

Let b(n) = ((-2*n-1) +(4*n+2)*x)/(n+1)*b(n-1) - (n/(n+1))*b(n-2) with x=1, then a(n) = b(n)*(n+1)!/6.
a(n) = (n+1)! * Sum_{k=3..n+1} 1/k. - Gary Detlefs, Jul 15 2010
a(n) = 2*A001711(n-2) for n >= 2. - Pontus von Brömssen, Jan 04 2025

Extensions

If all terms are really negative, sequence should probably be negated. - N. J. A. Sloane, Oct 01 2006
Negated terms and edited by G. C. Greubel, Oct 03 2019